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Abstract

High-pressure research provides fundamental insights into material properties, which are
important in condensed matter theories, planetary science and materials engineering. Studies
performed on molecular crystals such as Hz, Oz, N2 and NH3 have revealed remarkable phase
transitions and exotic states of matter at pressures reaching hundreds of gigapascals, leading to
unexpected bonding behaviors. These transformations, including metallization, polymerization
and the formation of novel high-pressure phases, have helped us to better understand chemical
and physical interactions in extreme environments.

In this aspect, halogens particularly bromine are used as a model system for studying
pressure-induced molecular dissociation and electronic transitions. lodine high-pressure phase
transitions are extensively studied, while bromine behavior remains less explored, with
unresolved questions regarding its phase stability, electronic properties, and intermediate
phases. On the other hand, bromine fluorides introduce additional complexities in bonding and
stability under compression, making them a subject of both fundamental and applied interest.

This thesis presents the results of computational studies on bromine and bromine fluorides

under high-pressure conditions. In article A1, we confirm the phase transition sequence of

. 90 GPa 128 GPa 188 GPa —
bromine as follows: Cmca —— Immm —— I4/mmm —— Fm3m. Our results show

excellent agreement with experimental data, especially for the molecular Cmca phase. In article
A2 we investigate the high-pressure behavior of bromine fluorides, confirming the stability of
known compounds BrFs and BrFs, and predicting two novel species, BrF> and BrFs, as
thermodynamically stable above 15 GPa. In article A3, we further explore the pressure-
dependent thermal and mechanical properties of bromine using density functional theory (DFT)
combined with the quasi-harmonic approximation (QHA). These results reveal significant
modifications in thermal expansion, heat capacity, and elastic stability with increasing
pressure. Additionally, article A4 (currently unpublished) complements the theoretical results
by presenting high-pressure X-ray diffraction experiments on bromine compressed up to 230
GPa and our simulations of the potential energy surface (PES) up to 180 GPa, further validating
the predicted phase transition sequence. This research advances our understanding of molecular
solids at high-pressure environments, laying the groundwork for future investigations in

planetary science, condensed matter physics, and materials design.

Keywords: High pressure, molecular dissociation, phase transitions, halogens, density

functional theory.
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Streszczenie

Badania wysokoci$nieniowe dostarczaja podstawowych informacji na temat wlasciwosci
materiatow, waznych w kontekscie badan z zakresu fizyki ciat statych, geologii i inzynierii
materialowej. Badania przeprowadzone na krysztatach molekularnych, takich jak Hz, Oz, N2 i
NHs, ujawnily niezwykle przejscia fazowe 1 egzotyczne stany materii przy ci$nieniach
siggajacych setek gigapaskali, prowadzacych do nieoczekiwanych zmian w wigzaniach
chemicznych. Te przemiany, w tym metalizacja, polimeryzacja i tworzenie nowych faz
wysokocisnieniowych, pomogly nam lepiej zrozumie¢ oddzialywania chemiczne i fizyczne w
ekstremalnych warunkach.

W tym kontekscie halogeny, w szczegolnosci brom, stuzg jako uktad modelowy do badania
wywolanej ci$nieniem dysocjacji czasteczkowej 1 przejs¢ elektronowych. Podczas gdy
przejécia fazowe jodu pod wysokim ci$nieniem sg dobrze udokumentowane, zachowanie
bromu pozostaje mniej zbadane, z nierozwigzanymi pytaniami dotyczacymi jego stabilnosci
fazowej, wlasciwosci elektronicznych i wystgpujacych faz posrednich. Jednoczesnie, fluorki
bromu wprowadzajg dodatkowe komplikacje w wigzaniu i stabilno$ci pod ci$nieniem, c0 czyni
je przedmiotem zaréwno badan podstawowych, jak i aplikacyjnych.

Niniejsza rozprawa przedstawia wyniki badan numerycznych struktury i wilasciwosci

bromu i fluorkdw bromu w warunkach wysokiego ci$nienia. W artykule Al potwierdzamy

_ _ 90 GPa 128 GPa 188 GPa _
sekwencje przemian fazowych bromu: Cmca —— Immm —— [4/mmm —— Fm3m.

Uzyskane wyniki wykazuja doskonata zgodno$¢ z danymi eksperymentalnymi, zwtaszcza jesli
chodzi o strukture i wlasciwosci czasteczkowej fazy Cmca. W artykule A2 opisano zachowanie
fluorkow bromu w warunkach wysokiego ci$nienia, potwierdzajac stabilno$§¢ znanych
zwigzkow BrFs i BrFs, a takze przewidujac, ze dwa nowe zwiazki, BrF> i BrFs, sg
termodynamicznie stabilne powyzej 15 GPa. W artykule A3 przedstawiono kolejne wyniki
dotyczace bromu, w tym zalezne od cisnienia wilasciwosci termiczne 1 mechaniczne,
wykorzystujgc teori¢ funkcjonatu gestosci (ang. density functional theory, DFT) potaczong z
przyblizeniem quasi-harmonicznym (ang. quasi-harmonic approximation, QHA). Wyniki te
ujawniaja znaczace zmiany rozszerzalnosci i pojemnosci cieplnej oraz stabilnosci
mechanicznej zachodzace wraz ze wzrostem cisnienia. Ponadto artykul A4 (obecnie
niepublikowany) uzupelnia wyniki teoretyczne, przedstawiajac eksperymenty dyfrakcji
rentgenowskiej bromu poddanego ci$nieniom sig¢gajacym 230 GPa. Zawarto w nim takze
symulacje powierzchni energii potencjalnej (ang. potential energy Surface, PES) do 180 GPa,

co dodatkowo potwierdza przewidywang sekwencje przej$¢ fazowych.
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Zawarte w publikacjach wyniki wypetniajg luki miedzy badaniami eksperymentalnymi i
teoretycznymi, oferujagc nowe spojrzenie na chemi¢ halogenow w ekstremalnych warunkach.
Badania te poszerzaja wiedzg¢ na temat krysztatow czasteczkowych w warunkach wysokiego
ci$nienia, ktadac podwaliny pod przyszte badania w zakresie nauk planetarnych, fizyki materii

skondensowanej i projektowania materiatow.

Stowa kluczowe: Wysokie ci$nienie, dysocjacja czasteczkowa, krysztaly molekularne,

przejsécia fazowe, halogeny, teoria funkcjonatu gestosci.
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1. Introduction

“Pressure” is a fundamental thermodynamic variable that forces matter into a state very
different from that observed in everyday conditions. While we typically experience only a
small range of pressures, such as the atmosphere we breathe and the weight of the air pressing
down on us, we rarely consider the extremes to which this invisible force can reach. The
pressure range in the universe spans from 1032 atm (in the emptiest part of the universe) to
10*32 atm (inside the core of a neutron star). Even within Earth’s core, pressure can reach up to
3.6x10° atm (360 GPa). Over billions of years, high pressures have played a crucial role in
shaping planetary structures, driving chemical and geological transformations, and influencing
the behaviour of materials deep inside stars and planets [1-4]. Because of its role in natural
processes, high pressure also serves as both a probe and a tool in modern science and
technology, altering atomic structures and electronic interactions to produce novel material
properties [5,6].

It leads to transformative phenomena such as metallization [7], polymerization [8],
superconductivity [9] and the emergence of novel chemical bonding arrangements [10]. These
effects have opened the door for discoveries in materials science, including hydrogen-rich
superconductors (HsS [11], LaH10 [12]), high-energy-density materials (cg-N) [8], superhard
materials (c-BN) [13], and thermoelectric materials (PbTe) [14]. These breakthroughs have
established high-pressure science as a cornerstone of modern materials science, influencing

fields from condensed matter physics to energy storage and industrial applications.

Condensation Polymerization Metallization lonization

0.1 1 10 100 1000 P (GPa)

Fig. 1 Under extreme pressures, materials transform into novel states, such as methane hydrates (0.1
GPa), diamond (5 GPa), symmetric ice (80 GPa), metallic hydrogen (500 GPa), and Al electrides (10
TPa), adapted from ref. [5]
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1.1 High-Pressure Science in Modern Research

The first high-pressure measurement technique (reaching ~10 GPa) was introduced by
Percy W. Bridgman, who was awarded the Nobel Prize in 1946 for his contributions to high-
pressure physics [15]. Since then, high-pressure research has evolved significantly, utilizing
both static and dynamic compression methods. Static compression techniques, such as the one
utilizing the diamond anvil cells (DACs) and large-volume presses (LVPSs), are capable of
applying continuous pressure. DACs are used to reach pressure in the multi-megabar range,
whereas LVPs typically operate at about 50 GPa, making them ideal for studying systems in
equilibrium. On the other hand, dynamic compression techniques, such as shock-wave and
laser-driven approaches, generate much higher pressures (~5000 GPa) and temperatures
(~1000 K) over microsecond timescales to investigate rapid phase transitions [5].

The effect of pressure on materials depends on how it is applied. Hydrostatic pressure is
generated in contact with gas/liquid media and is uniform in all directions. Uniaxial
compression in a constrained volume is applied along one axis, providing a simpler hydrostatic
alternative. Quasi-hydrostatic stress refers to a state close to hydrostatic conditions but with
small differences in principal stresses due to experimental limitations or medium properties,
allowing for near-isotropic stress distribution with minimal deviatoric stress.

Recent in-situ measurement advancements, such as synchrotron X-ray diffraction [16] and
Raman spectroscopy [17], have made it possible to directly observe electronic, vibrational, and
structural changes in compressed materials [6,18]. Beyond fundamental research, high-
pressure technology has transformed materials engineering by facilitating industrial processes
such as high-pressure extrusion, hydroforming, and hot isostatic pressing, which enhance
mechanical strength and electrical performance [19].

However, high-pressure experiments still face challenges such as limited sample volumes
and/or short observation times, which can make direct measurements difficult. These
difficulties led to close collaboration between theorists and experimentalists. Theoretical
calculations of new compounds help identify potential targets for synthesis and provide insight
into their structure and properties once experimental data become available. In this framework,
density functional theory (DFT) offers a powerful computational approach, providing precise
atomic-scale simulations of electronic structures, phase transitions, vibrational properties,
magnetism and superconductivity under extreme pressures. Together, these complementary
approaches have accelerated discoveries, pushing the boundaries of both fundamental research

and real-world applications [20,21].
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1.2 Molecular Crystals

Molecular crystals are a type of crystalline solid where molecules are arranged in a periodic
structure and held together by intermolecular forces such as van der Waals, hydrogen bonding
and m — m interactions. These molecular crystals are widely studied in materials science,
condensed matter physics, chemistry, and pharmaceuticals due to their tunable electronic,
optical, mechanical, and thermal properties. Molecular crystals play a significant role in
condensed matter physics enabling the study of quantum phenomena, charge transport
mechanisms and phase transitions, thus contributing to the development of organic
semiconductors [22] and superconductors [23] materials. When subjected to high pressure,
molecular crystals undergo structural transformations due to the reduction in intermolecular
distances, leading to phenomena such as metallization, or even molecular dissociation [24,25].
Their versatility in materials science allows for applications in smart materials, thermoelectric
energy harvesting, and molecular actuators [26]. In pharmaceuticals, molecular crystals are
important for drug formulation, as polymorphism directly impact drug solubility, stability, and
bioavailability, which are important aspects in medicinal efficacy, as observed for example in
aspirin and paracetamol [27]. By bridging fundamental physics, chemistry and engineering,
molecular crystals continue to drive innovations in next-generation functional materials.

One of the most studied molecular systems is hydrogen (Hz), the simplest and lightest
element in the periodic table. At extreme pressures above 350 GPa hydrogen is thought to
transit into a metallic phase, where molecular bonds break and atoms rearrange into a dense
atomic solid [28]. This transition is of particular interest as metallic hydrogen is predicted to
be a room-temperature superconductor [7,24]. Despite the many theoretical and experimental
studies devoted to this system, the exact nature of its transition to a metallic phase and its
potential superconducting properties remain active areas of research [29-33]. Similarly, other
diatomic molecules such as nitrogen (N2), oxygen (Oz), and the halogens (F2, Clz, Brz, 1) also
undergo remarkable transformations under compression. Nitrogen is a naturally abundant
element with a highly stable triple bond (N=N). The molecular crystal of this element
transforms into a polymeric structure with single N—N bonds at pressures above 110 GPa with
temperature around 2000 K [34-36]. This polymeric phase of nitrogen is of great interest due
to its potential as a high-energy-density material. In contrast, modelling indicates that oxygen
requires much higher pressure (1920 GPa) to form a polymeric spiral chain structure [37-40].

Halogens are a group of extremely reactive nonmetallic elements in Group 17 of the

periodic table, including fluorine (F), chlorine (CI), bromine (Br), iodine (I) and astatine (At).
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They are highly electronegative with fluorine being the most electronegative element in the
Pauling scale. Halogen naturally exist as diatomic molecules (Xz2) and readily react with metals
to produce ionic salts (e.g., NaCl, KBr) featuring halide ions (X°). Due to their electron-rich
nature, they participate in a wide range of chemical reactions and exhibit unique physical and
electronic properties under extreme conditions.

Interestingly, halogens undergo pressure-induced metallization and dissociation like
hydrogen. On the other hand, their electron-rich nature connects them to oxygen. However,
polymerization occurs in halogens at much lower pressures as compared to hydrogen and
oxygen. Among these elements, Br, and I> have been particularly interesting due to their
relatively lower transition pressures making them more accessible for experimental and
theoretical studies [41-45] as compared to F> and Cl, [46-48]. These elements undergo a series
of phase transformations from molecular phase of Cmca symmetry through incommensurate
structures exhibiting iodine chains to monoatomic phases displaying metallic properties.

lodine, which is a solid at ambient pressure and temperature, undergoes the following sequence

. 16 GPa 20.8 GPa 32 GPa 43 GPa
of transitions Cmca —— Cmc2; —— Fmmm(00y)s00 —— Immm —— [4/mmm

55 GPa —
— Fm3m [49,50].

Bromine is the only liquid halogen at ambient conditions. At room temperature it
crystallizes into the molecular Cmca phase when compressed above 0.5 GPa [51]. As pressure
increases, bromine follows a phase transition pathway similar to iodine. Several
experimental [52-54] and theoretical [55-58] studies have been conducted on bromine, with
ongoing research continuing to explore its high-pressure behaviour [50,59,60]. Despite these
investigations, several unresolved questions remain regarding bromine’s behaviour under
extreme conditions. In particular, structural details and thermodynamic significance of
incommensurate phase (Fmmm(00y)s00) that emerges during the Cmca to Immm transition,
are not fully resolved. A significant discrepancy also exists between experimentally determined
phase boundary pressures of halogens and those predicted by density functional theory (DFT),
raising concerns about the accuracy of current computational models. This concern stimulated
part of our research undertaken in the framework of this thesis.

To bridge this gap and improve agreement between experimental and theoretical data, in
our study we utilized the hybrid HSEO6 functional to investigate the phase transition of solid
bromine up to 200 GPa. The detailed results are presented in article Al (see Appendix 1). These

results enhance our understanding of bromine’s high-pressure behaviour and contribute to a
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broader comprehension of the fundamental principles governing molecular solids under

extreme conditions.
1.3 Reactivity of Fluorine

Fluorine is the most electronegative halogen with an electronegativity of 4.0 in the Pauling
scale. This high electronegativity introduces additional complexity due to strong oxidizing
power and small atomic size [61]. Its high electron affinity allows it to attract electrons with
great intensity, making it one of the most chemically reactive elements. Under ambient
conditions, fluorine exists as diatomic molecules (F2), but due to its high reactivity, it rarely
remains in molecular form when interacting with other substances at high pressure and
temperature. Fluorine easily interacts with other elements to form fluorides, often stabilizing
the element in its highest oxidation state. Well-known examples are sulfur hexafluoride (SFe)
as an electrical insulator, xenon hexafluoride (XeFg), and uranium hexafluoride (UFs) for
nuclear fuel processing. Additionally, fluorine-rich compounds offer greater mechanical
strength which making them essential for wear-resistant coatings, as exemplified by
polytetrafluoroethylene (PTFE). Furthermore, high-pressure fluorination can significantly
enhance catalytic efficiency, particularly in energy-related technologies such as fuel cells.

Theoretical analysis based on DFT modelling, predict that under compression, fluorine
should undergo significant structural and chemical transformations: a transition from the Cmca
molecular phase to a monatomic tetragonal (P42/mmc) structure at 2500 GPa followed by a
cubic phase (Pm3n) at 3000 GPa [62]. These transformations attract interest of scientists
because of its the theoretical and practical implications.

Calculations indicate that fluorine remains the most electronegative element under high
pressure [63]. Its small atomic radius and high effective nuclear charge allow it to attract
electrons more strongly than any other element. Most elements become more electropositive
under pressure but fluorine electronegativity decreases slightly, allowing it to maintain its
strong electron affinity [64]. This should lead to novel high-pressure phases with different
bonding configurations, significantly impacting its molecular and electronic properties in
extreme conditions.

One of the most intriguing aspects of fluorine chemistry is its reactivity with other halogens.
Halogen fluorides (AFx, where A = 1, Br, Cl) represent an important class of compounds
characterized by a wide range of coordination numbers (up to 8) and oxidation states (up to
+7), making them valuable for exploring electron-rich bonding compound [65]. Both bromine
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fluorides (BrFx, x=1, 3, and 5), as well as iodine (IFx, x=1, 3, and 5), and chlorine (CIFyx, x=1,
3, and 5) fluorides have been extensively studied in the gas phase [66-69] and in the solid
state [70—73]. However, despite their importance, many aspects of their high-pressure phase
transitions and bonding mechanisms remain unexplored.

To address these knowledge gaps in the theoretical description of halogen fluorides, we
employed density functional theory (DFT) to model the high-pressure reactivity of bromine
and fluorine up to 100 GPa. A comprehensive analysis of bromine fluorides behaviour under
extreme conditions is provided in article A2 (see Appendix 2).

1.4 Mechanical Properties

Mechanical properties describe how materials respond to external applied forces that
generate stresses. These properties, including elasticity, stiffness, hardness, ductility, and
toughness are essential for understanding the structural integrity and performance of materials
under varying conditions. In high-pressure research, mechanical properties play a crucial role
in determining phase stability, deformation mechanisms, and structural transformations. The
ability of a material to resist deformation or undergo phase transitions under pressure is often
related by its elastic constants, bulk modulus, and shear modulus. These parameters help in
predicting whether a material remains mechanically stable or transforms into a new structural
phase.

Among the mechanical properties of solids, bulk modulus (B) is particularly significant, as
it measures material’s resistance to uniform pressure. A high bulk modulus indicates low
compressibility and greater structural rigidity, while a low bulk modulus suggests that a
material is more susceptible to pressure-induced volume reduction. For example, diamond
(bulk modulus at ambient pressure, Bo, equal to 446 GPa) has the highest known bulk modulus,
making it exceptionally resistant to compression, which is why it is commonly used in diamond
anvil cell (DAC) experiments for generating extreme pressures. In contrast, crystals of noble
gases like argon and helium have very low bulk moduli, making them highly compressible and
useful as pressure-transmitting media in high-pressure studies.

The accuracy of mechanical property measurements at high pressures depends on
maintaining hydrostatic conditions, where stress is applied uniformly in all directions. Under
such conditions, elastic moduli such as bulk modulus and shear modulus can be precisely
determined. However, at sufficiently high pressures all known pressure-transmitting media

solidify, leading to non-hydrostatic stresses that may distort mechanical property
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measurements [74]. To minimize these effects, soft pressure-transmitting media like argon,
helium, and NaCl are commonly used in high-pressure experiments [75-77]. These media help
ensure accurate assessment of elastic properties and phase transitions by reducing differential
stress effects.

Elastic properties also play a critical role in phase stability and mechanical strength. At
extreme pressures, materials often undergo increased hardness and reduced plasticity, leading
to the formation of superhard phases such as cubic boron nitride (c-BN) and diamond-like
carbon structures, which have applications in industrial coatings, high-strength tools, and
advanced electronics. Furthermore, mechanical properties are correlated with electronic band
structures and vibrational modes, which are key factors in understanding metallization,
superconductivity, and high-pressure chemistry. To explore these effects, we conducted
hybrid-DFT calculations to analyze the pressure-dependent thermal and mechanical behaviour
of bromine up to 90 GPa. Further insights into the mechanical properties of bromine under high

pressure are presented in article A3 (see Appendix 3).
1.5 Objectives, Hypothesis, and Scope of the Work

The primary objective of this study is to investigate the high-pressure behaviour of solid
bromine (Br2) and bromine fluorides (BrFx) compounds with a particular focus on their
structural phase transition, electronic, and mechanical properties, as well as reactivity under
extreme conditions.

Specifically, this work aims to:

1. Explain the high-pressure phase transitions of solid bromine (Br2) up to 200 GPa,
resolving discrepancies between experimental results and density functional theory
(DFT) predictions.

2. Explore the reactivity of bromine and fluorine, and the possible formation of
compounds (BrFx) at high pressure, identifying new high-pressure phases, bonding
mechanisms, and electronic transformations up to 100 GPa.

3. Analyse the mechanical properties and pressure dependent behaviour of bromine as a
molecular crystal up to 90 GPa, focusing on bulk modulus, elastic moduli, and
deformation behaviour through density functional theory (DFT) calculations used in

conjunction with the quasi-harmonic approximation (QHA).
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Through these objectives, this research aims to bridge the gap between theoretical
predictions and experimental observations, leading to a more comprehensive understanding of
halogen materials under extreme conditions.

We hypothesize that high-pressure phase transitions in bromine and bromine-fluoride
compounds follow distinct pathways that differ from previous theoretical predictions.

Specifically, we expect:

1. Solid bromine (Br2) will undergo a series of phase transitions with pressure-dependent
structural modifications up to 200 GPa, refining discrepancies between experimental
observations and DFT calculations.

2. Bromine fluoride compounds (BrFx) will exhibit unexpected bonding behaviour and
electronic transformations under extreme pressures, potentially leading to new
metastable phases.

3. Mechanical properties of bromine, including bulk modulus and mechanical stability,
will follow a pressure-dependent trend, significantly influencing its elastic deformation

under extreme conditions.
1.6 Publications

This research has resulted in three published journal articles (listed below), accumulating
100 and 140 ministerial points (MNiSW). These articles are included in Appendices 1 — 3 of
this dissertation. An additional unpublished manuscript, currently in review in the journal
Physical Review B, describes experimental validation of the phase transition in bromine,
demonstrating an anharmonic, entropically driven approach to the close-packed metallic state.
This work highlights how subtle enthalpy differences and lattice flexibility impact halogen
behaviour under extreme conditions, offering new insight into high-pressure material physics.
This work is included as Appendix 4.
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2. Computational Methods and Formalisms

In the computational part of the thesis, we used density functional theory (DFT), a quantum
mechanical framework, to predict the ground-state properties of materials at the atomic scale.
Computational tools such as LOBSTER for bonding analysis and XtalOpt an evolutionary
algorithm for high-pressure structural prediction, were employed. Vibrational and elastic
property calculations were performed using Phonopy (version 2.18.0).

2.1 The Schroédinger Equation

Condensed matter systems are fundamentally described by quantum mechanics, where
atomic interactions are dictated by Coulomb’s law, which governs the electrostatic forces
between charged particles. Quantum mechanics provides a robust framework for understanding
simple systems, such as a single electron in a hydrogen atom, where the Schrédinger equation
can be solved exactly to determine the quantum state [1]. However, the situation becomes
significantly more complex for systems with multiple electrons. In such many-electron
systems, the electrons interact not only with the positively charged nuclei but also with one
another, leading to highly intricate correlation effects and exchange interactions. These
complexities make the Schrddinger equation mathematically intractable for direct solutions.
This raises the question of how can we study electron dynamics in atoms, molecules, and
condensed matter systems which are many-electron systems. To address this, we start with the
time-independent Schrddinger equation:

Hy(r) = Ep(r) (2.1)

where H is the Hamiltonian operator (containing the sum of the kinetic and potential energies),
Y (r) is the wavefunction describing the quantum state of the electrons and ions and E is the

total energy eigenvalue of the system. The Hamiltonian can be expressed as;

P
H=-2-V +V(r) (2.2)

2
In this Hamiltonian, the kinetic energy operator is represented by the — zh—m V2 term, while V(1)

term represent the potential energy of quantum system as a function of the position vector r.
In any physical system, where atoms are periodically arranged, the wavefunction depends

on the coordinates of all particles in the system. This includes both the electrons and atomic
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nuclei positions: ¢ = f(r1 T e TNy R, Ro,y e, RN), as well as spin degrees of freedom. The
many-body Hamiltonian for such systems includes contributions from the Kinetic energy of
electrons (T,) and ions (T,), as well as potential energy terms for electron-electron (7, ),

electron-ion (7, ,) and ion-ion 7, ,, interactions [79]:

~

H= T, + 7\Tn + I’/\'e,e + I’}'e,n + ‘7n,n (2-3)

This leads to the full time-independent Schrédinger equation:

o _ h? 2 h? 2 |1 e? ZiZp 1w et 1
Hy(r) = { 2me Z‘ariz 2M; ZlaRf t3 Zl:;ll', ameg |R;— Ry| *3 ZL;J] ameg |ri— 1]
Y Vi e () = E() (24)
L&l yme, |ri— Ry '

In this equation, 7 is the reduce Planck’s constant, me and M, are masses of electrons and
ions, Z is the charge of ion, e is the charge of electron and r, R denote the positions of electrons
and ions. The terms |R; — Ry|, |r; — ;| and |r; — Ry represent the distances between ions,
electron, and that between electrons and ions, respectively. Solving this equation reveals the
ground-state energy of the system. From this, the ground-state properties of the material under
equilibrium conditions can be determined. Due to the equation's complexity, especially in large
systems, it’s hard to solve. Therefore, several approximations to this theory were proposed

which are discussed in detail in the proceeding sections.
2.2 Born-Oppenheimer Approximation

The first major approximation, introduced by Max Born and J. Robert Oppenheimer in
1927 [80], simplifies the many-body Schrédinger equation by separating electronic and nuclear
motion. It is based on the fact that the ratio of ion mass to electron mass is approximately 10%,
meaning ions move significantly slower than electrons. This allows electrons to be treated
independently, assuming static ions. Under this approximation, the kinetic energy of the ion
term is negligible, and the ion-ion potential becomes a constant. The modified equation (2.3)

is written as:

H=T,+

o

e + Von + Constant (2.5)

Grouping nuclear contributions into an external potential simplifies the Hamiltonian further:
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P

H = 7\We + ‘73,3 + vext (2.6)

ﬁtp(r):{——zlar zl,ilr_” %S W}<27)
#]j l

This approximation significantly simplifies the many-body Schrddinger equation by
focusing on electronic motion while treating ion as static. However, in most cases this
approximation is still insufficient to solve the Schrddinger equation and therefore more

approximations are needed which leads us to Hartree and Hartree-Fock approaches.
2.3 Wavefunction-Based Approach
2.3.1 Hartree Approximations

The Hartree approximation further simplifies the many-electron Schrodinger equation by
treating electrons as independent particles moving in an average field [81-84]. The many-

electron wavefunction is approximated as a product of single-particle wavefunctions:
Y (1,12 e, ) = Y1 (1) P2 (12) - Py (ry) (2.8)
This leads to a single-electron equation:
hZ 62 ~ ~
(= 32 Zigm + Ve 0 ) 90 = Bt (1) 29)
here, the Hartree potential 7, is defined as:
Uy = [ 25 ”“ ) ' (210)

here p(r") represent the electron density and is given by:

p(r) = Xily:(r)I? (2.11)

where ;(r") are the single-electron wavefunctions. While this method uses a mean-field
approximation, it does not account for electron correlations or the Pauli exclusion principle.
Consequently, this method also neglects exchange interactions, necessitating additional

refinements for more accurate descriptions [85,86].
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2.3.2 Hartree-Fock Approximation

The Hartree-Fock method improves upon Hartree by incorporating the Pauli exclusion

principle and exchange interactions through antisymmetric wavefunctions [87,88]:

Y1(r) Y1) .. Yn(ry)
1 ¢1§rz) l/JZQ’Z) - l/)N'(Tz) (2.12)

Y (1, 1y, e, Ty ) = W : : . :
Y1) Yo (ry) o Y (Ow)

The normalization factor \/% ensures that the wavefunction maintains its statistical validity.

By minimizing the total energy using the Lagrange multiplier method, the Hartree-Fock

equations are derived:

(_

Hartree-Fock accounts for exchange interactions but ignores Coulomb electronic

i) wi(r')

[r—17']

o Sigzt Ve + V) i)~ 35 dirp(r) = Egpi(r) (2.13)

correlation, meaning it does not fully capture electron-electron interactions beyond the mean-
field approximation. This leads to inaccuracies in computed energies, especially for strongly
correlated systems. Density functional theory (DFT) addresses these challenges by
reformulating the many-body problem in terms of the electronic density rather than
wavefunctions. This makes it computationally more efficient while approximating both

exchange and correlation effects through functionals.
2.4 Density Functional Theory

Hohenberg and Kohn introduced new theory in 1964, for solving many-electron systems
through the electron density n(#), which depends only on 3 spatial coordinates. This theory is
known as density functional theory (DFT). This was a breakthrough in the field due to its cost
effectiveness as many electron systems could be reduced to single electron density. The
Thomas-Fermi theory, Hohenberg-Kohn theorems and Kohn-Sham equations, constitute the
basic framework of DFT. All these theories will be discussed in next subsections.

2.4.1 Thomas-Fermi Theory

Before the Hohenberg and Kohn theorems, Thomas and Fermi introduced in 1927 the first

ever theory based on electron density (i.e. the function describing the probability of finding an
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electron in an infinitesimally small spatial region) [89,90]. The theory introduced electron
density instead of single particle wave function as a basic variable. In the case of N interacting

electrons, the kinetic energy in terms of electron density n(#) is given by:

5
Trr = Cp [ ()7 d3r (2.14)

Where the constant Cy, is

3 A2
_ > (ap2y2/3 -
Ce = 7o BT o

Now, the total energy can be written as a functional of n(#) in form of the summation of kinetic
energy, external potential (V,z) and electrostatic energy, which is,

ez n(#)n®

amtey  |F-T

E=Tr+ [Vig @)@ d’r + 3 [[ d3r d37' (2.15)

Thomas-Fermi theory was the groundwork of the DFT; however, the semi-classical

expression of the energy was its drawback.
2.4.2 Hohenberg-Kohn Theorems

The density-based approach then further elaborated by the Pierre Hohenberg and Walter
Kohn in terms of two theorems which serve as the theoretical core of the DFT [91]. The

theorems are as follows:

Theorem |: Existence and Uniqueness: the ground-state electron density n(#) uniquely
determines the external potential 7, (#) acting on the system. The exact statement is the: “The
external potential V,,.(#) is a unique functional of the electron density n(7). As a result, the
total ground state energy E of any many body systems is also a unique functional of n(#), that
is, E =E[n].”

Theorem I1: Variational Principle: the system's ground-state energy is achieved at the lowest
value of the energy functional, which occurs exclusively when the input density is equal to the
ground-state density n(7). The statement is as follows: “The functional E[n] for the total

energy has a minimum equal to the ground-state energy at the ground-state density.”
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The theorem provides a foundation for a variational strategy, allowing the optimization of
an initial density to the true density using a self-consistent approach, as implemented in various

DFT software tools.
2.4.3 Kohn-Sham Approach

Using Hohenberg-Kohn theorems, Kohn and Sham (KS) came up with a better approach
where they replace N-electrons with fictious system of one electron [92,93]. In the KS method,
a single-particle potential V,¢((r) is defined, which generates the same ground-state electron
density as the interacting system. As a result, the total energy is formulated within this

framework as follows:
EKS[n] [ ] + EH[ ] + Exc[n] + fVext (F) n(F) d3T' (216)

where Tg[n] is non-interacting kinetic energy and Ey[n] is energy term under Hartree
approximation. The T¢[n] and Ey[n] can be defined as,

DR g gar (2.17)

A
MM=—;WWMM%>@B)

n(r) =X ¢ I (2.19)
N = [n(#) d3r (2.20)

Here, Tg[n] was described in the context of KS orbitals. The term E,. is a summation of
two energies, namely exchange energy E, and correlation energy E.. The exchange energy is
consequence of the anti-symmetric characteristics of the wave function as it changes the under
the position exchange. The correlation energy is due to the repulsive force between the two
electrons in the orbit. The term that puts DFT above HF is V.., which is the functional derivative
of the E,... However, the exact form of exchange correlation functional is unknown. The term
V.. can be written as;

SExc[n(?)]

Veeln()] = 22450 2 91

The motion of electrons occurs within an effective potential V, ¢ , which indirectly includes

the effects of electronic interactions. The electron-electron interactions in the KS equations are
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replaced by a coupling between electrons and an effective medium. The KS equation in the

Schrodinger form is written as;

Hys¢i(r) = Egs $:(r) (2.22)

and the Hamiltonian is;

Ags = —5 TV + Vgy (2.29)

In Hamiltonian, the sum of the three potentials (Vex: + Vi + Vi) is included as the Ve s
term. By iteratively adjusting the non-interacting electron density to match the ground state
density of the real interacting system, the self-consistent method is used to solve the
Hamiltonian. Starting with an initial density guess, the potential terms are recalculated until
the energy stabilizes at a convergent value. By transforming the many-electron problem into a
one-electron problem, the KS approach achieves significant efficiency. Despite its
effectiveness, the true form of the exchange-correlation functional (V,.) cannot yet be

determined precisely, requiring approximations that are addressed in the subsequent section.

2.5 Exchange-Correlation Functionals

To determine the accurate results using KS approach one needs to identify the true
exchange-correlation functional. Over the time, many theories have been explored to predict

the correct results. The idea of Jacob's ladder [94] helps organize and interpret these techniques

A P |
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Fig. 2 The "Jacob’s ladder" of density functional approximations. Higher levels mean greater accuracy and cost.
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highlighting how aiming for higher accuracy (moving to higher rungs of the ladder) leads to
greater computational requirements for the analyzed system. The exchange-correlation can be
classified in the three different categories based on the degree of information they incorporate
about the electron density: local, semi-local and non-local functionals. The local functional
involve local density approximation (LDA), semi-local functionals involving generalized

gradient approximation (GGA) and meta-GGA, while non-local involves hybrid functionals.
2.5.1 Local Density Approximation (LDA)

The LDA, developed by Kohn and Sham, is a fundamental method for approximating E,..
This approach assumes that the electron density varies so slowly that it can be considered
uniform within small spatial regions [95]. In this regard, an effective way to approximate the
electron density involves modeling it locally as a homogeneous electron gas. The E,. is then
computed by integrating energy density over the entire spatial domain of this gas. The E,. for

LDA can be written as;
Ex24n(@)] = [ n(P) exc[n(P)]d3r (2.24)

where €,. is exchange-correlation energy per particle for electron gas with density
n(7) [94]. The LDA excels in modeling the physical properties of metals and systems
analogous to a homogeneous electron gas. This capability likely stems from the localized
nature of exchange-correlation interactions in such materials. Despite its versatility across
many material types, LDA falters when confronted with systems exhibiting non-uniform
electron density or significant electron correlation effects. Notable failures include the
underestimation of band gaps in semiconductors and insulators and inaccuracies in determining

lattice constants and bond lengths in weakly bonded molecular systems [96].
2.5.2 Generalized Gradient Approximation (GGA)

We know that real systems inherently lack perfect homogeneity and exhibit varying density
distributions surrounding electrons. Recognizing this, Herman in 1969 proposed the foundation
for the GGA. This method enhances the accuracy of exchange-correlation functionals by
considering both the electron density and its gradient, combining local and semi-local

aspects [97]. The GGA approximated E,. can be given as;

Exc (] = [ n(@) €xc[n(r),V [n(®)]]d°r (2.25)
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The more accurate results as compared to LDA stems from inclusion of non-local effects
in the exchange-correlation energy which it models using the gradient of the electron density.
Several notable functionals, including PW91 developed by Perdew and Wang in 1991 [98,99]
and the PBE functional by Perdew, Burke and Ernzerhof constructed in 1996 [100], have been
developed within the GGA framework. The generalized-gradient approximation effectively
predicts properties such as lattice structures, magnetic behaviour, and elastic constants, often
aligning well with experimental results across a variety of materials. However, its limitations
become evident in certain areas, such as underestimating band gaps and bond lengths in
semiconductors and insulators. Furthermore, it struggles to describe systems with strongly
correlated electrons, like high-temperature superconductors and heavy fermion compounds. In
general, LDA provides foundation for the GGA in which enhancement factor F(s) directly
modifies the LDA energy as:

[V (@)
n4/3 (1)

ESGAIn(P),s] = [ n(F) eEPAn(#)]F (s)d3r; where s = C (2.26)

While this form generally represents GGA, it is important to note that PW91 does not
strictly follow this formulation. Instead of directly using an enhancement factor F(s), PW91l
utilizes a more complex integral approach to derive the exchange-correlation functional. In
contrast, PBE clearly follows this formulation, defining F (s) in a way that these constraints are
directly incorporated. To achieve even greater accuracy, meta-GGA and hybrid functionals

were developed, which are discussed in the following sections.
2.5.3 meta-GGA functionals (SCAN, r’SCAN)

Meta-GGA functionals are other semi-local functionals that extend the GGA by integrating
Kinetic energy density along with the gradients and Laplacians of the electron density. These
additional terms in meta-GGA enhance the ground-state properties of molecules, surfaces, and
solids beyond LDA and GGA, making them valuable for studying complex materials.

The first meta-GGA functional PKZB [101] (Perdew-Kurth-Zupan-Blaha) was introduced
in 1999, improving upon GGA by using kinetic energy density, enhancing atomization energies
and reaction barriers, but it did not strictly satisfy exact constraints. In 2003, the TPSS [102]
(Tao-Perdew-Staroverov-Scuseria) functional was developed to obey exact constraints while
balancing accuracy and efficiency for both molecules and solids. In 2006 the MO06-L
functional [103] was introduced by Truhlar’s group as a pure meta-GGA, optimized for

transition metals, thermochemistry and kinetics offering further improvements in chemical
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accuracy. However, a major breakthrough came in 2015 with the development of the Strongly
Constrained and Appropriately Normed (SCAN) functional [104] by Sun, Ruzsinszky, and
Perdew. SCAN was the first nonempirical meta-GGA that satisfied all 17 known exact
constraints applicable to this class of functionals. Despite its success, SCAN introduces
numerical instabilities which leads to the development of its regularized version (rSCAN) and
further regularized-restored (r’SCAN) functional [105,106] to improve stability while

maintaining high accuracy. The meta-GGA functional can be given as,
EReta=G94 ()] = [ n() €xc[n(P), V [n()], V2 [n(D)]]d*r (2.27)
2.5.4 Hybrid functionals (B3LYP, HSE06)

To address the limitations of standard exchange-correlation functionals, a group of non-
local hybrid functionals was developed. The term "hybrid" denotes a blend of density
functional and orbital-dependent Hartree-Fock exchange energies, motivated by the exact
treatment of exchange energy in Hartree-Fock. A notable example is the widely recognized
empirical B3LYP functional introduced by Becke [107] , which takes the form,

BT = B + ag(BY — EE%) + (S — E1P%) + ao(BE¥ — BPY) (229)

A new subclass of range-separated hybrid functionals has been introduced, characterized
by a distance-dependent exchange mixing. These functionals employ Hartree-Fock exchange
for the short-range (SR) interactions, while transitioning back to pure density functional
exchange for the long-range (LR) components. One of the examples of this family of methods
is the well-known HSEOQ6 functional is given by Heyd, Scuseria, and Ernzerhof [108].

BP0 = [V BT (o) + /4 BEA (] g + [BE%)1 + EE (229)

The parameter p, often around 0.2 A%, determines the range-separation and corresponds to
a characteristic distance (2/u), beyond which short-range interactions diminish significantly.
The limit u — oo leads to calculation of pure PBE-GGA calculations. The HSEO06 functional
has proven successful in computing accurate properties of materials in good agreement with
experimental results. M. Liu et. al [109] recently conducted a comprehensive study examined
1135 materials including metals, semiconductors, and insulators to evaluate the accuracy of the
HSEO6 functional in predicting material properties. This study confirmed that HSEO06

calculated band gaps have a mean absolute error (MAE) of 0.687 eV as compared to
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experimental values, which is significantly lower than the 1.184 eV error associated with PBE
calculations. Furthermore, HSEQ6 enhances the accuracy of formation energy predictions,
which are necessary for determining thermodynamic stability of materials. While PBE
systematically underestimates formation enthalpies, resulting an MAE of 0.175 eV/atom,
HSEO06 reduces this error to 0.147 eV/atom, providing a more precise description of material

energetics.
2.6 Modelling Solid Materials with DFT
2.6.1 Electron-lon Interactions

The exact solution of KS equations demands accurate description of external potential, Vex:
which mimics the electron-ion interactions in solids. However, it is difficult to determine Vex:
in solids owing to the large number of electrons and their large oscillatory behaviour near
atomic nuclei. We know that the core electrons are inert and have little impact on material’s
physical properties while valence electrons actively participate in these phenomena and are
responsible for the most of the material’s properties. Therefore, DFT provides a practical
approach by treating valence and core electrons separately and simplifying their influence in
solid-state systems. It is imperative to expand the auxiliary KS orbitals using established basis
functions for the accurate solution of KS equations. The primary methods for evaluating
electron-ion interactions are the pseudopotential technique, which is discussed in following

section.
2.6.2 Plane Waves and Pseudopotential Method

In general, a crystal is formed through the systematic repetition of a unit cell in three-
dimensional space, creating a periodic atomic arrangement. This periodic structure imposes a
recurring potential on the electrons within the crystal. By applying Bloch’s theorem, the
periodicity can be leveraged to simplify the solution of the KS equations. Bloch’s theorem
describes the electronic wavefunction in such a lattice as a combination of a plane wave and a
periodic function aligned with the lattice structure. Therefore, electronic wavefunction can be

written in terms of plane waves as;

<Pn,k(7') = 6 Cn,k+Gei(K+G)'r (2.30)
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where, C, x4 are expansion coefficient, k is wave vector within the first Brillouin zone and G
is the reciprocal lattice vector.

This equation theoretically requires an infinite number of plane waves to describe the
electronic states precisely. However, in practical calculations only plane waves with lower

kinetic energy contribute significantly. The kinetic energy of a plane wave (Exin) is given by:
hZ
Ekin = ﬁ Ik + GIZ (231)

In calculations utilizing the plane wave basis set only plane waves with a kinetic lower than a
certain cut-off value (Ecut) is taken into account. A higher cutoff energy E,; includes more
plane waves, improving accuracy and ensuring convergence of the total energy, forces, and
stress tensors. However, larger E,,,; also increases computational cost.

In the system with tightly bound core and valence orbitals near the atomic nucleus, very
rapid oscillations in the wavefunctions are required to preserve orthogonality with core orbitals.
This necessitates a vast number of plane waves (high Ecut values) to capture the rapid variations
in these regions. We know that physical properties of a material are primarily influenced by
the wavefunction in the interstitial regions between atoms, rather than near the frozen core.
Therefore, the wavefunction can be approximated to be smooth and slowly varying around the
frozen core while still accurately reflecting the true wavefunction outside this region. These
approximations result in pseudo wavefunctions that are free of nodes or abrupt changes near
the core, significantly reducing the number of plane waves required to represent the
wavefunction. The potentials which produce such pseudo wavefunctions are known as
pseudopotentials. Therefore, pseudopotential method is highly effective for its computational
efficiency and practicality among others in DFT. The schematic of pseudopotential concept is
shown in Fig. (1). The blue and red color indicates the wavefunction for coulomb potential of
nucleus and pseudo wavefunction, respectively. To construct pseudopotentials effectively, the
following criteria must be satisfied: (1) the valence wave function should remain unchanged
outside the core radius re, (2) the pseudo wavefunction must precisely match the true
wavefunction at the core boundary, (3) both the pseudo wavefunction and its first derivative
should be continuous at the boundary, and (4) the pseudo wave function should be node-free
within the core [95]. The pseudo-wave functions are tailored to align with all-electron
wavefunctions beyond the core radius rc and to ensure smooth behavior within it. Numerous
approaches, including norm-conserving [110], ultrasoft and projector-augmented wave

pseudopotentials have been introduced over the years [111,112]. The concept of
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pseudopotentials enables the creation of smooth wavefunctions devoid of nodes, which can be
expanded using a plane wave framework. Despite easing certain computational hurdles, the
method still necessitates a significant number of plane waves to achieve precision, making it
less practical. An alternative approach, known as the projector augmented wave (PAW)
method [113], involves transforming the highly oscillatory wavefunctions into auxiliary
wavefunctions. This transformation allows the auxiliary wavefunctions to exhibit rapid
convergence when expressed as a plane-wave expansion. These smooth wavefunctions are
computationally efficient and well-suited for plane-wave-based methods. The PAW method is

recognized for its exceptional accuracy and has become a cornerstone in DFT calculations.

quseudo (4
- 14
7\ 7

. -
- \ Yo

4
A A
~r

vpseudo

1

~Y

Fig. 3 A schematic illustration of the concept of pseudopotential, adapted from ref. [34]

2.6.3 van der Waals Corrections

In the conventional framework of DFT, long-range dispersion forces are not properly
accounted for, which are essential for accurately calculating the adsorption behavior of
molecules on surfaces and interfaces, as well as properties of molecular crystals. This limitation
is particularly important for systems exhibiting quantum confinement, such as 2D materials
and layered crystal structures. To address this the so-called van der Waals corrections are
introduced to DFT in order to include the effects of long-range dispersion forces. Among a
number of such corrections, Grimme introduced the semiempirical D2 and D3 corrections,
which accurately include the long-range dispersion forces in standard DFT calculations [114—

116]. The total energy after dispersion correction term is given as;
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Eprr+pz/p3 = Exs + Eqis (2.32)

where Exs and E;; are the energies of KS approach and Grimme’s dispersion terms,
respectively.
In DFT-D2 method, the dispersion energy is added as an explicit pairwise interaction between

atoms:

(Nqe=1) goNae  Co
Egis = —Se 2i=1t j=§+1R_6-6- fdmp (Rij) (233)
ij

where, s, is a scaling factor dependent on the exchange-correlation functional, Nat is the total

number of atoms in the system, Céj = fCéCé refers to the dispersion coefficient for an atomic

pair (ij), and Riﬁj signifies the distance between atoms. The fyn, (R;;) represents damping

function which is given as;

fdmp (Rij) = % (2.34)
1+ e

Roij

where d is an empirical parameter and Ry;; = Ry; + Ry is sum of the atomic vdW radius.

DFT-D3 improves upon D2 by introducing higher-order terms (c&sg) allowing environment-

dependent dispersion coefficients:
at™ a C‘rilj
Edis = - Zivzf ! Z?’:f-'-l 2n=6,8 Sn ﬁfdmp,n(Rij) (2-35)
ij

Where s, and sg are scaling factors for the ¢, and cg terms. C,ilj are dispersion coefficients that

depend on the atomic coordination. fy,,,, » (R;;) is the modified damping function;

1

7
_al(Rij/RT],O -1)

fdmp,n (Rij) = (236)

1+ e

Where a; and a, are empirical parameters that influence the range of dispersion effects. Ri{o

is a reference interatomic distance. The parameters sg a; and a, are optimized for different
functionals by fitting to high-level quantum chemistry calculations. The values used for the
HSEO06 [117] and r’SCAN [118] are given below:
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Functionals Sg ai az
HSE06+D3 2.310 0.383 5.685
r’.SCAN+D3 0.789 0.494 5.730

Using vdW corrections in DFT considerably increases the accuracy of calculated properties,
including adsorption energies, lattice constants, and cohesive energies. It also enhances
structural predictions of molecular crystals, layered materials, and van der Waals

heterostructures.
2.6.4 LOBSTER: Bonding and Charge Analysis

LOBSTER first converts the delocalized wavefunctions generated from density functional
theory (DFT) calculations into a localized atomic orbital basis set. It uses the projector-
augmented wave (PAW) method to reconstruct local atomic orbitals, which helps in the
understanding of chemical bonding. This process changes the electronic structure from a
delocalized representation to a localized form which can be used for further analysis, such as
using the linear combination of atomic orbitals (LCAO) approach.

After this projection, LOBSTER generates the density and the Hamiltonian matrix, which
contain essential information about orbital populations and interaction strengths, allowing for
a quantitative description of bonding.

The Crystal Orbital Bond Index (COBI) [119] is computed by evaluating the overlap
population between two atomic orbitals across the Brillouin Zone. This measure quantifies the

bonding interactions between atoms in a crystal.
COBI,, = ¥ wiRe(c; kv k)  6(gi(k) —E) (2.37)

Where ¢, ;

energy eigenvalues.

, are the projected coefficients, wy, are the k-point weights and ¢;(k) are the

The Integrated COBI (ICOBI) is obtained by summing over all occupied energy levels.
COBI corresponds to the chemical bond order, and a higher value indicate a stronger covalent
interaction between atoms. For example, the ICOBI of a pair of carbon atoms in diamond is

0.95, which is close to 1 as this is the bond order expected for a single C-C bond.

ICOBI,, = [ COBI,, (E)dE (2.38)
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LOBSTER also computes atomic charges using Mulliken and Léwdin population
analyses [120], which provide estimates of electron distribution on atoms.

The Mulliken charge on an atom A is given by:
o= Ny — ZueA B, (2.39)

Where N, is the number of valence electrons on atom A and F, is the electron population
in atomic orbitals.

Lowdin charges are computed similarly but use an orthogonalized density matrix to reduce
basis-set dependencies. This method provides a more consistent charge distribution compared

to Mulliken analysis.
2.7 XtalOpt: An Open-Source Tool for Crystal Structure Prediction

XtalOpt is an evolutionary algorithm (EA) that predict crystal structures by exploring the
potential energy landscape using minimal input, such as chemical formula [121]. This open-
source tool integrates with external optimization programs, including VASP [112,122],
PWSCF [123], and GULP [124-126].

Predicting the crystal structure of materials using only their stoichiometry has been a long-
standing challenge in computational materials science. The complexity arises from the high-
dimensional parameter space, which includes six lattice parameters and multiple atomic
positions that must be efficiently sampled to identify global minima. Traditional methods, such
as chemical intuition or random structure generation often fail for complex systems.
Evolutionary algorithms, inspired by natural selection processes, offer a powerful alternative
by iteratively optimizing candidate structures to converge on the most stable configurations.
XtalOpt employs a population-based evolutionary algorithm where individuals undergo
selection, mutation, and crossover to explore the energy landscape.

XtalOpt utilizes both pure and hybrid evolutionary operators for structure generation [127—
132]. Pure operators, such as crossover [133-135], strain [134,136,137], ripple, and
exchange [127,129,134-137], modify lattice parameters, atomic positions, and ordering.
Hybrid operators such as "stripple” (strain + ripple) and "permustrain [136]" (exchange +
strain), combine these effects to enhance search efficiency and reduce duplicate structures.

Below a description of the operators is given:
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I. Crossover: Combines two parent structures by cutting and merging their atomic
configurations. The offspring's lattice dimensions are determined by a weighted
average of the parental cell vectors.

Il. Strain: Modifies lattice vectors using a strain matrix:

f12 f13
146 5 >
View =V % 1+ & 8273 (2.40)
€ €
| = 22 1+ 3]

where ¢;; are random values drawn from a zero-centered normal distribution with a
specified standard deviation.
I11. Ripple: Introduces periodic displacements to atomic positions:
AZ = pcos(2mux + 0,)cos(2mny + 6,) (2.41)

Here, AZ is the displacement of an atom along the z-axis, p is the displacement
amplitude, u and n define periodicity and 6, and 6, are random phase shifts.

IV. Exchange: Adjusts atomic ordering by swapping the positions of atoms of different
types a specified number of times.

V. Stripple: Combines strain and ripple to improve search diversity and avoid duplicate
structures.

VI. Permustrain: Integrates atomic swapping and lattice deformation to balance

structural changes.

XtalOpt continuously generates and optimizes new structures without waiting for all
individuals in a generation to complete their optimization. This strategy reduces bottlenecks
and improves computational efficiency. To prevent stagnation in the population, XtalOpt uses
a niching strategy based on direct comparisons of atomic position and lattice parameters,
providing a more precise and reliable method for ensuring structural diversity. Key parameters,
such as ripple amplitude, strain standard deviation and crossover contribution are carefully
adjusted to enhance search efficiency. Additionally, search space constraints including lattice
parameter ranges and interatomic distances, ensure that generated structures remain physically
valid.

The algorithm starts with a set of random or user-specified structures. These structures are
locally optimization using external codes to refine atomic positions and lattice parameters.
Their stability is evaluated based on enthalpy, which is calculated as: H = U + PV, where

U is the internal energy, P is pressure, and V is the volume. Structures with lower enthalpy are
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more stable and are more likely to contribute to the next generation of structures via
evolutionary operators. This iterative process continues until the user terminates it or reaches
convergence.

XtalOpt version r12 has been integrated with a machine learning (ML) model trained on
the Automatic FLOW (AFLOW) database, which introduces a multi-objective optimization
approach that evaluates structural stability (enthalpy/energy) alongside mechanical properties
such as bulk and shear modulus [138]. This enhancement allows the algorithm to identify
superhard materials more efficiently while significantly lowering the computational cost of
DFT-based elastic tensor calculations. By optimizing beyond just enthalpy minimization, this
approach makes the search process faster, more flexible, and adaptable, expanding its
application to properties like electronic bandgaps, superconductivity, and thermal stability.

XtalOpt has been extensively applied in high-pressure research, where chemical intuition
often fails in experimental determination under extreme conditions. Ongoing development in
XtalOpt is focused on improving crossover strategies and explore additional fitness metrics to
improve performance. With a user-friendly interface and comprehensive tutorials, XtalOpt is
accessible to researchers across various disciplines, including chemistry, physics, and materials
science. One of its key applications is the prediction of high-pressure hydrides, which are
interesting because of their potential as hydrogen-rich superconductors [139-141]. By
facilitating the discovery of novel high-pressure materials with significant technological
potential, XtalOpt continues to drive innovation across multiple scientific fields.

2.8 Phonon Structure

Lattice dynamics theory developed from the quantum harmonic oscillator, provides a
systematic approach modelling atomic vibrations in periodic solids. It offers an alternative to
classical empirical models and molecular dynamics (MD) simulations for studying natural
thermal motion and its influence on physical properties, all while maintaining a modest
computational cost [142,143].

In condensed matter physics, these atomic vibrations are known as phonons. These
vibrations consist of waves created by the displacement of atoms in the crystal lattice and are
classified as a type of quasiparticle. Phonons, as quasiparticles play an important role in

understanding the thermal, optical, and mechanical properties of materials.
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In the harmonic approximation, a crystal is represented as a network of atoms connected by
harmonic springs, with its vibrations described by 3N normal modes (N is the number of atoms

in the primitive unit cell). Each normal mode appears as a traveling wave [144]:
Aexpli(qg-r —wt)] (2.42)

Where q is the wave vector, w is the angular frequency and A is the vibration amplitude.

The energy with each normal mode is quantized as:
Eq = (ng +3) hw(q) (243)

Where n, = 0,1,2,... and each quantum of vibrational energy Zw(g), defines a phonon
analogous to a photon in electromagnetic waves. Although phonons as quasiparticles do not
carry true momentum but they are assigned an effective momentum #%q for practical analysis.
The theoretical framework of phonons begins with the potential energy U(r) of a crystal,
which can be expressed using a Taylor series expansion around the equilibrium atomic

positions 1y :
ou 1 92U
U(r)=U(ry) + Zi,a@um + EZi'j'“'Bmui“ufﬁ + ... (2.44)

Here, u;, represents the displacement of atom i in the a direction from equilibrium, and U (r,)
is the energy of the system at equilibrium, The second term vanishes because the forces
(0U/du;,) are zero at equilibrium and the third term involving the second derivatives of U,
defines the force constants ¢, js:

02U

aan (245)

Dia,jp =

By neglecting higher-order terms simplifies the potential energy as a quadratic functional,
which forms the basis of the harmonic approximation.

The oscillatory motion of atoms around their equilibrium positions is governed by

Newton’s equation of motion. For an atom i of mass M;, displaced by u; in the « direction, the

equation of motion is:

2
d Uig

M; acz — 2 Piajpujp (2.46)
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The solutions to these equations describe two types of vibrational modes: acoustic and
optical. Acoustic modes involve low-frequency oscillations in which atoms move in phase with
each other. These include longitudinal acoustic (LA) modes, where vibrations travel in the
same direction as the wave, and transverse acoustic (TA) modes, where the vibrations occur
perpendicular to the direction of wave propagation. In contrast, optical modes involve out-of-
phase vibrations between neighboring atoms and occur at higher frequencies. These modes are
important for interactions with light and play a key role in determining the material’s thermal
and mechanical properties.

The atomic displacements in a periodic lattice are expressed using plane wave solutions:

Ui () = 7=e' Ve, () (247)

This is the refined version of simpler plane wave expression in equation (2.42). Here €,(q) is
the polarization vector, describing the vibration direction of atoms in a specific phonon mode.
The inclusion of mass M; ensures correct normalization in phonon calculations.

Substituting the wave solution into the equation of motion leads to the dynamical
matrix [145,146], which is defined as:

Do (@) = =B P jp 70177 (2.48)
The dynamical matrix D(q) is Hermitian matrix and has real eigenvalues [143]. Its
diagonalization gives the squared phonon frequencies (w?). Positive squared frequencies
(w? > 0) indicate dynamic stability in the system as they correspond to restoring forces. On
the other hand, negative squared frequencies (w? < 0) correspond to the imaginary
frequencies, indicating dynamical instability.

There are two methods to calculate D(q). The first is the finite-displacement method [145],
where atoms are slightly shifted in real space, and the resulting forces are used to calculate the
force constants. This method often requires large supercells to accurately capture long-range
interatomic forces and achieve precise sampling of the Brillouin zone. The second method is
based on linear-response theory, which directly calculates D(q) in reciprocal space by using
density functional perturbation theory (DFPT) [147-149].

Crystal symmetry significantly reduces computational effort and improves accuracy by
minimizing the number of unique atomic displacements and g-points, focusing on the

irreducible Brillouin zone [145].
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The phonon density of states (DoS) quantifies the number of vibrational modes available at

each frequency w:

9(@) = ~ 8w — (@) (249)

This functional is crucial for connecting microscopic phonon spectrum to macroscopic
thermodynamic behavior.

The vibrational contribution to the Helmholtz free energy F,,;; at constant volume is given

by:

hws(@)

Fainy = 2S5 hog(@) + ksT Tl [1 — e kT ] (2.50)

where h is the reduced Planck constant, kg is the Boltzmann constant, T is the temperature,
and ws(q)is the frequency of the phonon mode. Using the free energy (F) other
thermodynamic properties such as heat capacity (Cv) and entropy (S) can be derived. This
expression accounts for both zero-point energy and thermal occupation of phonon states.

The quasi-harmonic approximation (QHA) extends harmonic phonon theory to include
temperature and pressure effects [145,150]. In this method, phonon frequencies are treated as

functions of the unit cell volume (V). The Gibbs free energy in QHA is given by:
G (P,T)="2[E(V) + F,;, (V,T) + PV] (2.51)

Where E (V) is the ground-state energy, F,;,(V,T) is the vibrational free energy, and PV
represents the pressure-volume term. By minimizing G (P, T) with respect to V, equilibrium
properties such as thermal expansion and bulk modulus are determined. In this dissertation, the
finite displacement method followed by QHA calculations was carried out using the Phonopy

code. The typical steps in Phonopy-based phonon calculations include:

I.  Supercell Generation: A supercell of the crystal structure is generated to capture

periodicity and interatomic interactions.

Il. Displacement Creation: Small displacements are applied to specific atoms,
generating configurations for force calculations.

I1l.  DFT Software Integration: Input configurations into DFT software (e.g., VASP)
to compute forces.

IV.  Force Constant Extraction: Use Phonopy to extract force constants ¢;q ;g
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V. Dynamical Matrix Construction: Using the force constants, the dynamical matrix

is constructed, and eigenvalues are solved to obtain phonon dispersion relations.
2.9 Raman Spectroscopy

Raman spectroscopy is a widely used technique for studying vibrational properties in
materials. The intensity of Raman active modes is determined by the dielectric polarizability
tensor, which changes with atomic motion.

In this section, we present a systematic approach for computing Raman activities by using
phonon eigenvectors from the dynamical matrix D, (q) and dielectric tensor derivatives as
described in earlier theoretical frameworks [151,152].

Raman tensor is given by:

() _ 94ij
R = 50, (2.52)
Where «a;; is the dielectric polarizability tensor and Q. is the phonon normal mode
coordinate.

The equation for normal mode coordinates and atomic displacements is given by:
Qs = i Xy we (253)

Where X,ES) = e,ES) /+/ M, is the mass-weighted phonon eigenvector and u, is the atomic
displacement.

Now the Raman tensor can be rewrite as:
(s) _ 0aij (s)
Rij = Zkﬁ,jxk (2.54)

This equation shows that the Raman tensor depends on how the dielectric polarizability
changes as atomic displacements occur.

The dielectric polarizability derivatives are calculated as follows using finite differences
from first-principles calculations:

aai]- _ aij(uk+Au)—aij(uk—Au)
ouy 2Au

(2.55)

Using this approximation, the Raman tensor components are computed as:
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aij(uk+Au)—aij(uk—Au)
2Au

RS = 3, [ ]ij) (2.56)

Once the Raman tensor is obtained, the Raman intensity of each mode is determined by:

1 2 7
Iraman = 45 |5 Uiy + Ly + 133) | + 2 [Uhy = 122)% + (g — 133)% + (o2 — 133)% +

6(I% + I +13)] (257)

Where [;; are elements of the Raman tensor. The first term represents the isotropic
contribution to Raman scattering, while the second term accounts for the anisotropic
contributions which influence polarization effects.

To compare theoretical Raman spectra with experimental results, a Lorentzian broadening
function is applied. This accounts for phonon finite lifetimes and spectrometer resolution
limits:

I(w) = Y 1Reman2__T___ (3 58)

T (w—wg)2+I2

Where T is the phonon lifetime broadening factor which accounting for finite phonon

lifetimes and instrumental resolution effects.
2.10 Mechanical Properties

Elastic properties describe how materials respond to stress or strain, offering vital insights
into their brittleness, stiffness, hardness, and structural stability. These properties are
influenced by external pressure and provide valuable information about phase transitions and
the mechanical stability of crystal structures. Elastic constants are calculated using equilibrium
configurations, where atomic positions are relaxed under each strain applied to the unit cell.
The numerical derivative of energy with respect to strain helps to calculate stress, forming the
basis for assessing the mechanical performance and stability of materials [153].

In the linear elastic regime, the relationship between the stress tensor (o;;) and the

corresponding strain tensor (&;) is described by Hooke's Law:
0ij = Y Cijricrr (2.59)

where Cjj,; represents the elastic stiffness tensor. On the grounds of static energy analysis, the
elastic constants correspond to the second derivative of energy with respect to strain per unit

volume. This relationship can be expressed as:
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Cijkl = (260)
Where the stiffness tensor is represented as C;; in matrix form, determined by the crystal
symmetry.

In this work, the elastic constants were calculated for bromine, which has an orthorhombic

crystal structure. Orthorhombic crystals exhibit nine independent elastic constants (C;;):

C11 C12 Cy3
Cyz (a3
. . C33 . . .
R R (2.61)
CSS .
Cee

For mechanical stability, these constants must satisfy the Born stability criteria [154,155]

defined by the following relationships for orthorhombic crystals:
Cii >0, Cj +Cjj —2C;; > 0,Cy1 + Cop + G353+ 2(Ci2 + Ci3+ C53) >0

The C;; constants define properties of single crystals. Properties of polycrystalline
aggregates of crystal are described by aggregate mechanical properties. Aggregate mechanical
properties such as bulk modulus (B) and shear modulus (G) are calculated from C;; using

averaging methods such as Voigt, Reuss, or Hill approximations [155].

The Voigt approximation assumes uniform strain and gives:

By = —[Cy; + Cpp + C33 + 2(C13 + Cy3 + C33)]

O =

1
Gy = 15 [(C11 + Cap + C33 — Cip — Ci3 — Ca3) + 3(Cay + Css + Cop)]

The Reuss approximation assumes uniform stress and uses elastic compliance

constants (S;;), obtained as the inverse of the matrix of elastic constants.

1
Br = 9 [S11 + Saz + S33+ 2 (S12 + Si3 + S23)]

15 1
G = — |
: 4 1(S11 4 Sa2 + S33) — 4 (S12 + S13 4 S23) + 3(Sas + Ss5 + See)

The Hill approximation averages the VVoigt and Reuss results:
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H — 2 ) H — 2
Using these moduli, other mechanical properties such as Young's modulus (E) and

Poisson’s ratio (v) can also be calculated.

Young's modulus (E), describes the material's rigidity, is calculated as:

9GB
3B+ G

Poisson’s ratio, indicating the material's ductility, is given by:

_ 3B-26
VT 2BB+06)

These properties provide a comprehensive understanding of the material’s mechanical

behavior and are crucial for predicting its performance under various conditions.

48



3. Summary of Results

The work presented in this thesis has been published in three articles and one unpublished
manuscript (currently under review), all of which are listed in Section 1.6 of the Introduction
and included as Appendices. This section provides a comprehensive summary and discussion
of the main results, focusing on the behavior of halogens, particularly bromine and fluorine
under high-pressure conditions.

3.1 High-Pressure Behavior of Solid Bromine

We started our research by investigating the high-pressure behavior of solid bromine using
hybrid DFT calculations. Traditional GGA-based methods struggle to accurately describe
phase transitions and electronic properties of such systems at extreme pressures, necessitating
a more advanced approach. To improve accuracy, we employed DFT calculations with the
HSEO06 functional and Grimme-D3 dispersion correction, utilizing VASP 6.2 code to study the
structural and electronic properties of bromine up to 200 GPa. For these calculations, we used
standard PAW potentials, explicitly treating the 4s%/4p® valence electrons. A plane-wave
energy cutoff of 800 eV was applied and the Brillouin zone was sampled using a Monkhorst-
Pack mesh with a k-point spacing of 2r x0.033A™. Electronic minimization was performed
with a convergence threshold of 1077 eV. Structural optimizations were performed until atomic
forces were reduced below 5 meV/A, ensuring accurate assessment of metallization, phase
stability, and incommensurate phases. Additionally, we employed Lobster 4.1.0 for bonding
analysis, VESTA for structural visualizations, and FINDSY M for symmetry recognition.

At ambient pressure, both GGA and meta-GGA methods predict the ground-state structures
of iodine and bromine incorrectly, favoring C2/m monoatomic chains over the experimentally
observed molecular Cmca phase. To resolve this, we applied several functionals with D3
dispersion corrections (see Table 1 in the Supplementary Material of article A1, Appendix 1).
Our results shows that the only hybrid functionals correctly reproduced the energetic stability
of the Cmca phase, with structural accuracy improving from GGA to meta-GGA to hybrid
methods (see below Fig. 4). We therefore adopted hybrid functionals for further calculations.
Comparisons of theoretical lattice constants and Raman frequencies with experimental X-ray
and vibrational spectroscopic data show excellent agreement (see Fig. 3 inarticle A1, Appendix
1), confirming that our calculations accurately capture the high-pressure stability of the

molecular Cmca phase.
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Fig 4. (a) Crystal structure of solid bromine in the Cmca molecular structure (Phase ). (b) Comparison
between the computed and experimentally observed geometry of the Cmca phase at 1 atm.
Our results confirm that solid bromine undergoes a pressure-induced phase transition from

90 GP
the Cmca (molecular) —S Immm (nonmolecular) phase. This result closely aligns with

previous experimental studies, which reported this transition around 80+5 GPa [52].
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Fig 5. Pressure-dependent enthalpies (at T = 0 K) of bromine phases relative to the 14/mmm structure.
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Additionally, our calculation predicts two further phase transitions that at the time of

128 GPa
publication have not yet been observed experimentally from Immm —— I14/mmm

188 GPa — . .
—— Fm3m as shown in above Fig.5.

A significant result of our study is that bromine becomes metallic at 80 GPa while still in
its molecular Cmca phase. Previous GGA-based calculations predicted metallization at a much
lower pressure of 42.5 GPa [58] (see Fig.5 from article A1, Appendix 1). This metallization
occurs due to the weakening of the Br-Br bond, driven by increasing antibonding effects due
to the shortening of intermolecular Br--Br contacts under compression. As the molecular bond
destabilized, bromine transitions into quasi-2D metallic structures (Immm and 14/mmm) before
finally adopting a fully 3D metallic face-centered cubic (Fm3m) structure at 188 GPa, as

depicted in below Fig. 6.
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Fig 6. (a) High-pressure crystal structures of solid bromine: phase | (Cmca), phase Il (Immm), phase 111
(14/mmm), and phase IV (Fm3m). (b) Br-Br distances calculated as a function of pressure for all four phases.
Stars indicate experimental values (blue-ref. [156] pink — ref. [157]). (c) Integrated crystal orbital bond index

(ICOBI) for Br-Br distances. The vertical dashed lines in (b) and (c) represent the predicted pressures for

structural transitions between the respective ground-state phases of bromine.

Another intriguing aspect of bromine high-pressure behavior is the appearance of
incommensurate phases during its transition from Cmca to Immm. Our study indicated that the

Fmm2-28 structure remains stable only within a narrow pressure range of 89 to 92 GPa, while
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the Cm-10 phase never becomes energetically favorable at any pressure (see Fig.6 in article
Al, Appendix 1). These modulated phases appear to be transient intermediates which are most
probably stabilized to the entropic terms which are not included in our calculations. Recent
single-crystal synchrotron X-ray diffraction (SCXRD) studies by Yin et al. [50] have
experimentally confirmed the presence of incommensurate structures in bromine within the
81-112 GPa pressure range, validating our theoretical predictions. Further details are provided
in article A1 (Appendix 1).

3.2 Stability and Reactivity of Bromine Fluorides

Beyond pure bromine, we extended our investigation to bromine fluorides under
compression. Fluorination is known to significantly alter the bonding behavior of halogens,
and our goal was to explore the stability and reactivity of bromine fluorides at high pressures.

We explored the stability and reactivity of bromine fluorides up to 100 GPa, focusing on
how compression influences their bonding and phase transitions. The enthalpy and geometry
of BrF were calculated at T=0 K using VASP 6.3 codes. The standard PAW potentials were
used with explicit treatment of the 4s%/4p® electrons of bromine and the 2s%/2p° electrons of
fluorine. For all calculations, we used a plane-wave energy cutoff of 800 eV and electronic
minimization was considered converged when energy differences reached 107" eV. The
Brillouin zone was sampled using a Monkhorst—Pack mesh, with a 2z x0.033A ™! spacing of k-
points. The electron localization function (ELF) was computed using VASP, while additional
analyses, including phonon dispersion, bonding analysis, structural visualization, and
symmetry recognition, were carried out with Phonopy, Lobster 4.1.0, VESTA, and FINDSY M.

Additionally, a structure search was performed using XtalOpt (version r12) to explore the
lowest-enthalpy structures of bromine fluorides (BrmFn, wherem =1, n=1-7,andm=2,n=
3, 5) at 20, 50, and 80 GPa. The searches used structures in which the number of formula units
per unit cell was between 1 and 6. The initial generation consisted of 18 randomly generated
structures, with additional seed structures included from previous calculations. Symmetry
constraints and space group perception with a length tolerance of 0.150 A ensured structural
diversity while avoiding duplicates. The search used an evolutionary algorithm with a pool size
of 20 structures per formula unit allowing up to 25 continuous structures per generation. The
first-generation structures were evolved using a combination of crossover (15%), stripple
mutations (50%), permutations (35%), and lattice strain mutations (maximum strain standard

deviation of 0.5). Formula unit crossovers were introduced after generation 4. A total of 399
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structures per search were generated during the search, with up to 24 jobs running in parallel
to optimize computational efficiency. The fitness function used for selecting the most stable
structure was based on enthalpy minimization and evaluated using DFT calculations with the
r’SCAN+D3 functional.

Our calculations confirmed the stability of BrFz and BrFs at ambient pressure and also

predicted two novel bromine fluorides BrF, and BrFs under high-pressure conditions.
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Fig 7. Convex hull diagram predicting the stability for bromine fluorides at different pressures (filled symbols
represent stable stoichiometries); experimental formation enthalpies for gaseous BrF (green stars) are from
ref. [158] (b) Br-F phase diagram (0 atm to 100 GPa) with colors and symmetry labels for stable phases.

BrFs undergoes a pressure-induced phase transition from Cmc2; ﬂ Cmcm ﬂ: P1. It
is important to note that, BrFs becomes thermodynamically unstable above 21 GPa with respect
to decomposition into BrFs and the newly predicted bromine fluoride of BrF-.

Enthalpy formation calculations, depicted in Fig. 7(a), indicate that BrFs is the most stable
bromine fluoride in the studied pressure range. BrFs exists as a liquid under ambient conditions,

but it crystallizes into a solid phase with P1 symmetry at 1 atm. Around 8 GPa, it transforms
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into a molecular crystal with P1 symmetry, consisting of square pyramidal BrFs units. In the
P1 phase at ambient pressure, Br-F bond lengths range from 1.72 to 1.83 A, while in the
PIphase at 100 GPa, the bond lengths are slightly shorter, ranging from 1.65 to 1.81 A (see
Fig. S3 in supplementary material of article A2, Appendix 2). Notably, BrF remains
thermodynamically unstable across the entire pressure range of 0 to100 GPa.

BrF> emerges as novel bromine fluoride, becoming thermodynamically and dynamically
stable at pressures above 13 GPa and remaining stable up to at least 100 GPa. It adopts a
monoclinic C2/m crystal structure, characterized by a distinct trimeric arrangement of F-Br-F
units, where the central unit is linear and the outer ones are slightly bent (see Fig. 5, article A2,
Appendix 2). This unique trimeric configuration is stabilized by three-center bonding
interactions between bromine atoms, which leads to the formation of radical species. BrF; is
also predicted to be an open-shell, semiconducting compound with a small but finite band gap
that persists even under high pressure. Importantly, it may be synthesized either by the reaction
of Brz and BrFs at 13 GPa or through the pressure-induced decomposition of BrFz into BrF
and BrFs above 21 GPa, offering experimentally accessible routes to this novel compound.

Similarly, BrFs became stable above 9 GPa and persisted on the convex hull up to 100 GPa,
as illustrated in Fig. 7(a). BrFs stabilizes through an alternative pathway, with its electrons
more uniformly delocalized across the molecule, resulting in a more stable electronic structure.
These results show how applying high pressure changes the behavior of bromine fluorides,
making them structurally and electronically different from iodine fluorides. Further details and

an extended discussion of these results are available in article A2 (Appendix 2).
3.3 Thermal and Mechanical Behaviour of Bromine under High Pressure

To explore the thermal and mechanical properties of bromine under high pressure, we
performed hybrid DFT calculations in combination with the quasi-harmonic approximation
(QHA). Phonon dispersion analysis using the finite displacement method (Phonopy 2.18.0)
confirmed that the Cmca phase remains dynamically stable up to 90 GPa, with no signs of
imaginary vibrational modes (see Fig. 2 in article A3, Appendix 3).

The calculated Raman-active frequencies closely match with experimental results as shown
in Fig.8a. DFT modeling accurately captures the 2Ag and 2B3g frequency shift above 20 GPa
and the significant hardening of the 1Ag and 1Bsq librational modes, which increase by over
100 cm™ at 30 GPa. These hindered rotations within the bc plane (Fig. 8b) have higher
frequencies and greater pressure dependence than the 1B1g mode.
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The computed Raman spectra for the Cmca phase (Fig.8c) shows negligible 1B1g and 1Bz
mode intensity at 0 GPa, explaining their absence in experiments. As shown in Fig. 8d, their
intensity increases with pressure, which is consistent with the observed emergence of 1Bigq
above 30 GPa. Additionally, the pressure-induced increase in 1Aq intensity obscures the 2Bz

band, explaining its absence in experimental observations.
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Fig 8. (a) Raman frequencies for the Cmca phase: our HSE06+D3 data (grey lines) and experiment (dots, red—
ref. [159], green—ref. [160], blue—ref. [54]). (b) Atomic displacements (red vectors) in the Bsg and Ag modes.
(c, d) calculated Raman spectra of bromine (blue lines) at 0 GPa and 50 GPa.

Using phonon based QHA calculations, we derived thermodynamic parameters such as free
energy (F), entropy (S), heat capacity, and thermal expansion coefficients across a temperature
range from 0 to 1000 K and pressures up to 90 GPa (see Fig.4 from article A3, Appendix 3).
Our results show that the heat capacity initially follows the T3 dependence predicted by Debye
theory at low temperatures. As pressure increases, the heat capacity approaches the Dulong—
Petit limit but at a higher temperature, reflecting enhanced intermolecular interactions and
anharmonic effects. The thermal expansion coefficient (a) also decreases with pressure,
reflecting the increased rigidity of the molecular structure of bromine under compression.

The calculated elastic constant indicate that the C13 begins to soften around 60 GPa while
Cuas elastic constant decreases above 80 GPa (see below Fig.9). This trend suggests mechanical
instability near 90 GPa, coinciding with predicted band gap closure (~80 GPa) and

experimentally determined appearance of incommensurate phases (~81 GPa) [50].
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Fig 9. The pressure dependence of (a) the calculated elastic constants at 0 K and (b) the bulk modulus, with a

comparison between VASP and QHA for bromine.

We also examined pressure-dependent isotropic bulk modulus (B), shear modulus (G), and
Young’s modulus (Y) of bromine using Voigt-Reuss-Hill approximation, as detailed in Section
2.10 of the Methods. At ambient pressure, the bulk modulus estimated from the elastic
constants is ~11.8 GPa, which is higher than the 5.5 GPa obtained through QHA calculations,
as shown in above Fig. 9b. The calculated shear and Young’s moduli increase consistently with
increasing pressure. At 30 GPa, the elastic modulus of bromine reaches a value comparable to
that of steel (see Fig.7 article A3, Appendix 3). Furthermore, the calculated Pugh’s ratio (B/G
< 1.75) and Poisson’s ratio (9 < 0.26) indicate that bromine is brittle in the orthorhombic
phase. A comprehensive analysis of the thermal and mechanical properties of bromine up to
90 GPa is presented in article A3 (Appendix 3).

3.4 High-Pressure Behaviour of Solid Bromine - Experimental Validation

To confirm our predicted phase transitions above 90 GPa, our experimental collaborators
conducted high-pressure experiments on solid bromine using diamond anvil cells (DACs),
achieving static pressures up to 230 GPa. These experiments were performed at the Advanced
Photon Source (USA) and the European Synchrotron Radiation Facility (France), utilizing
synchrotron X-ray diffraction to examine the structural evolution of bromine under extreme
conditions.

To further understand the structural changes observed in experiment, we performed
additional DFT calculations to investigate the ground-state properties and potential energy
surface (PES) of metallic bromine at pressures between 90 and 180 GPa. These calculations
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were performed using the HSE06+D3 functional in VASP 6.3.2 code with a dense k-point
sampling of 19x19x12 to ensure high accuracy.

All three structure Immm, 14/mmm and Fm3m represented within common orthorhombic
conventional cell by adjusting the ratios of the lattice parameters b/a and c/a, with keeping
bromine atoms fixed at the fractional coordinates (0,0,0) and (%2, %2, %2). At each pressure point,
we generated a set of structures by varying b/a from 1.00 to 1.10 and c/a from 1.40 to 1.95,
optimizing the cell volume at each step. When b/a =1, the a and b axes become equal and
structure becomes tetragonal, corresponding to the 14/mmm phase. Further increasing c/a =v/2,
leads to the cubic (Fm3m) phase, where all three lattice parameters are equal. This approach
allows all three phases to be explored within a same structural framework.

For every such distortion, the unit cell volume was optimized while keeping the cell shape
(i.e., b/a and c/a ratios) fixed. The enthalpy was then computed using DFT, providing a set of
values that define the potential energy surface (PES) as a function of lattice shape at a given
pressure. The thermodynamically stable structure corresponds to the minimum on this PES. To
simplify the mapping analysis, we assumed that the system is symmetric with respect to the
exchange of the a and b axes that is, H(a,b,c) = H(b,a,c).

Our X-ray diffraction data confirm that bromine undergoes a structural transition from
Immm-— 14/mmm—Fm3m phase (see Fig.1 in unpublished article A4, Appendix 4), consistent
with our theoretical predictions as shown in Fig.5. However, instead of a sharp transition,
experimental data show a coexistence of Immm and 14/mmm phases between 105 and 163 GPa
(see Fig. S1 in supplementary material of unpublished article A4, Appendix 4). This
coexistence suggests significant anharmonic and entropic contributions, indicating that both
phases remain thermodynamically accessible across a broad pressure range, rather than
undergoing a conventional first-order transition.

Fig. 10 shows calculated enthalpy surface of bromine as a function of b/a and c/a ratio. This
contour map shows the relative enthalpies of various distortions structure, with local minima
corresponding to energetically favorable phases. At 100 GPa the 14/mmm structure is a saddle
point between two PES minima corresponding to the Immm structure. Starting from 120 GPa
a broad, shallow region on the potential energy surface develops, encompassing both the Immm
and 14/mmm structures. This reveals a high degree of anharmonicity and suggesting entropic
stabilization of intermediate distortions. As pressure increases, a deeper and sharper minimum

emerges around the 14/mmm configuration, marking its evolution into the thermodynamic

ground state. At pressures above 160 GPa, a new minimum appears at b/a =1 and c/a = /2,
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corresponding to the Fm3m structure (see Fig. 3 in unpublished article A4, Appendix 4).

Between 180 and 195 GPa, the Fm3m minimum becomes slightly lower in enthalpy than the

14/mmm, marking the onset of a transition to a fully isotropic cubic phase.

Unlike iodine [161], which undergoes a Immm— 14/mmm transition without a noticeable

volume change, bromine exhibits a clear volume discontinuity, despite the symmetry

relationship between these phases. Potential energy surface (PES) calculations reveal strong

anharmonicity in the Immm phase, where minor lattice variations (~5-10%) result in minimal

enthalpy changes (<5 meV/atom). Bromine completes its structural transition with Fm3m

phase, which begins around 172 GPa and fully stabilizes near 180 GPa. A detailed discussion,

including the enthalpy landscape, is presented in unpublished article A4 (Appendix 4).

100 GPa

cla

1.40

T T T T T T T T T
110 1.08 106 1.04 1.02 100 0.98 096 0.94 0.92
b/a

140 GPa

110 108 1.06 1.04 1.02 100 098 096 094 092
b/a

Relative
enthalpy
(meV/atom)

35
30

25

Relative
enthalpy
(meV/atom)

35
30
25

20

1.95 4

120 GPa

Relative

1904}
1.85
180
1.754
1.70 4

cla

1.65 4
1.60
1.55 1
1.50 -
1.45 4

1.40

enthalpy
(meV/atom)

160

bra

T T T T T T T T T
110 1.08 1.06 1.04 1.02 1.00 098 0.96 0.94 0.92

Relative

c/a

1.40
110 1.08 1.06 1.04 1.0

GPa

2 1.00 098 096 0.94 0.92

b/a

enthalpy
(meV/atom)

35
30
25

20

15

10

Fig 10. Pressure-dependent PES of bromine (meV/atom) as a function of c/a and b/a ratios. (Black stars

indicate the Immm structure minima, black circle denoted the 14/mmm structure where b/a=1 and black

square show the Fm3m structure with b/a =1 and c¢/a = V2 = 1.41)

58



4. Conclusion and Future Work

This study presents a comprehensive theoretical and experimental investigation into the
high-pressure behavior of solid bromine (Brz), offering significant insights with high accuracy
into phase pressure induced phase transformations. We examined a sequence of structural
transitions between atomic phases by utilizing state-of-the-art computational methods,
particularly hybrid density functional theory (HSE06+D3) with synchrotron X-ray diffraction.
These transitions lead finally to the formation of a close-packed face centered cubic (fcc)
bromine phase with electronically isotropic metallic characteristic. The observed phase
transformation sequence is similar to the iodine but occurs at significantly higher pressures and
suggesting an unexpected first-order transition. This transition was further confirmed through
thermodynamic analyses based on the quasi-harmonic approximation (QHA), including
mechanical stability.

Additionally, our calculations also show that the Br/F phase diagram exhibits a rich and
previously unexplored chemistry under moderate pressure (~15 GPa). We found two novel
bromine fluoride compounds BrF2 and BrFg, both open-shell, non-metallic compounds. These
findings contribute to the understanding of chemical bonding and phase stability in condensed
matter systems under extreme conditions.

Future research will focus on fluorine’s high-pressure reactivity with other electronegative
nonmetals such as oxygen, sulfur, and chlorine. In parallel, we also intend to explore nitrogen-
rich materials, particularly those involving [N2]* dimers and extended nitrogen structures,
including recently synthesized polynitrides. This will involve a detailed analysis of bonding
characteristics, N-N distances, charge distributions, and bonding indices such as the Integrated
Crystal Orbital Bond Index (ICOBI). These analyses will contribute to a deeper understanding
of nitrogen chemistry under extreme conditions and holds promise for the design and
development of advanced materials with tailored properties for a range of technological
applications.

In conclusion, this study establishes a solid foundation for understanding non-metallic
bonding behavior in molecular crystals of interest under pressure and opens new pathways for
discovery of unconventional compounds. It not only enhances our knowledge of elemental
chemistry in extreme environments but also lays the groundwork for future experimental

validation and potential technological innovations.
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