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Abstract 

High-pressure research provides fundamental insights into material properties, which are 

important in condensed matter theories, planetary science and materials engineering. Studies 

performed on molecular crystals such as H2, O2, N2 and NH3 have revealed remarkable phase 

transitions and exotic states of matter at pressures reaching hundreds of gigapascals, leading to 

unexpected bonding behaviors. These transformations, including metallization, polymerization 

and the formation of novel high-pressure phases, have helped us to better understand chemical 

and physical interactions in extreme environments.  

In this aspect, halogens particularly bromine are used as a model system for studying 

pressure-induced molecular dissociation and electronic transitions. Iodine high-pressure phase 

transitions are extensively studied, while bromine behavior remains less explored, with 

unresolved questions regarding its phase stability, electronic properties, and intermediate 

phases. On the other hand, bromine fluorides introduce additional complexities in bonding and 

stability under compression, making them a subject of both fundamental and applied interest. 

This thesis presents the results of computational studies on bromine and bromine fluorides 

under high-pressure conditions.  In article A1, we confirm the phase transition sequence of 

bromine as follows: Cmca 
90 𝐺𝑃𝑎
→      Immm 

128 𝐺𝑃𝑎
→      I4/mmm 

188 𝐺𝑃𝑎
→       Fm3̅m. Our results show 

excellent agreement with experimental data, especially for the molecular Cmca phase. In article 

A2 we investigate the high-pressure behavior of bromine fluorides, confirming the stability of 

known compounds BrF3 and BrF5, and predicting two novel species, BrF2 and BrF6, as 

thermodynamically stable above 15 GPa. In article A3, we further explore the pressure-

dependent thermal and mechanical properties of bromine using density functional theory (DFT) 

combined with the quasi-harmonic approximation (QHA). These results reveal significant 

modifications in thermal expansion, heat capacity, and elastic stability with increasing 

pressure. Additionally, article A4 (currently unpublished) complements the theoretical results 

by presenting high-pressure X-ray diffraction experiments on bromine compressed up to 230 

GPa and our simulations of the potential energy surface (PES) up to 180 GPa, further validating 

the predicted phase transition sequence. This research advances our understanding of molecular 

solids at high-pressure environments, laying the groundwork for future investigations in 

planetary science, condensed matter physics, and materials design. 

 

Keywords: High pressure, molecular dissociation, phase transitions, halogens, density 

functional theory. 
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Streszczenie 

Badania wysokociśnieniowe dostarczają podstawowych informacji na temat właściwości 

materiałów, ważnych w kontekście badań z zakresu fizyki ciał stałych, geologii i inżynierii 

materiałowej. Badania przeprowadzone na kryształach molekularnych, takich jak H2, O2, N2 i 

NH3, ujawniły niezwykłe przejścia fazowe i egzotyczne stany materii przy ciśnieniach 

sięgających setek gigapaskali, prowadzących do nieoczekiwanych zmian w wiązaniach 

chemicznych. Te przemiany, w tym metalizacja, polimeryzacja i tworzenie nowych faz 

wysokociśnieniowych, pomogły nam lepiej zrozumieć oddziaływania chemiczne i fizyczne w 

ekstremalnych warunkach.  

W tym kontekście halogeny, w szczególności brom, służą jako układ modelowy do badania 

wywołanej ciśnieniem dysocjacji cząsteczkowej i przejść elektronowych. Podczas gdy 

przejścia fazowe jodu pod wysokim ciśnieniem są dobrze udokumentowane, zachowanie 

bromu pozostaje mniej zbadane, z nierozwiązanymi pytaniami dotyczącymi jego stabilności 

fazowej, właściwości elektronicznych i występujących faz pośrednich. Jednocześnie, fluorki 

bromu wprowadzają dodatkowe komplikacje w wiązaniu i stabilności pod ciśnieniem, co czyni 

je przedmiotem zarówno badań podstawowych, jak i aplikacyjnych.  

Niniejsza rozprawa przedstawia wyniki badań numerycznych struktury i właściwości 

bromu i fluorków bromu w warunkach wysokiego ciśnienia. W artykule A1 potwierdzamy 

sekwencję przemian fazowych bromu: Cmca 
90 𝐺𝑃𝑎
→      Immm 

128 𝐺𝑃𝑎
→      I4/mmm 

188 𝐺𝑃𝑎
→       Fm3̅m. 

Uzyskane wyniki wykazują doskonałą zgodność z danymi eksperymentalnymi, zwłaszcza jeśli 

chodzi o strukturę i właściwości cząsteczkowej fazy Cmca. W artykule A2 opisano zachowanie 

fluorków bromu w warunkach wysokiego ciśnienia, potwierdzając stabilność znanych 

związków BrF3 i BrF5, a także przewidując, że dwa nowe związki, BrF2 i BrF6, są 

termodynamicznie stabilne powyżej 15 GPa. W artykule A3 przedstawiono kolejne wyniki 

dotyczące bromu, w tym zależne od ciśnienia właściwości termiczne i mechaniczne, 

wykorzystując teorię funkcjonału gęstości (ang. density functional theory, DFT) połączoną z 

przybliżeniem quasi-harmonicznym (ang. quasi-harmonic approximation, QHA). Wyniki te 

ujawniają znaczące zmiany rozszerzalności i pojemności cieplnej oraz stabilności 

mechanicznej zachodzące wraz ze wzrostem ciśnienia. Ponadto artykuł A4 (obecnie 

niepublikowany) uzupełnia wyniki teoretyczne, przedstawiając eksperymenty dyfrakcji 

rentgenowskiej bromu poddanego ciśnieniom sięgającym 230 GPa. Zawarto w nim także 

symulacje powierzchni energii potencjalnej (ang. potential energy Surface, PES) do 180 GPa, 

co dodatkowo potwierdza przewidywaną sekwencję przejść fazowych. 
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Zawarte w publikacjach wyniki wypełniają luki między badaniami eksperymentalnymi i 

teoretycznymi, oferując nowe spojrzenie na chemię halogenów w ekstremalnych warunkach. 

Badania te poszerzają wiedzę na temat kryształów cząsteczkowych w warunkach wysokiego 

ciśnienia, kładąc podwaliny pod przyszłe badania w zakresie nauk planetarnych, fizyki materii 

skondensowanej i projektowania materiałów. 

 

Słowa kluczowe: Wysokie ciśnienie, dysocjacja cząsteczkowa, kryształy molekularne, 

przejścia fazowe, halogeny, teoria funkcjonału gęstości.  
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1. Introduction 

“Pressure” is a fundamental thermodynamic variable that forces matter into a state very 

different from that observed in everyday conditions. While we typically experience only a 

small range of pressures, such as the atmosphere we breathe and the weight of the air pressing 

down on us, we rarely consider the extremes to which this invisible force can reach. The 

pressure range in the universe spans from 10-32 atm (in the emptiest part of the universe) to 

10+32 atm (inside the core of a neutron star). Even within Earth’s core, pressure can reach up to 

3.6×106 atm (360 GPa). Over billions of years, high pressures have played a crucial role in 

shaping planetary structures, driving chemical and geological transformations, and influencing 

the behaviour of materials deep inside stars and planets [1–4]. Because of its role in natural 

processes, high pressure also serves as both a probe and a tool in modern science and 

technology, altering atomic structures and electronic interactions to produce novel material 

properties [5,6].  

It leads to transformative phenomena such as metallization [7], polymerization [8], 

superconductivity [9] and the emergence of novel chemical bonding arrangements [10]. These 

effects have opened the door for discoveries in materials science, including hydrogen-rich 

superconductors (H3S [11], LaH10 [12]), high-energy-density materials (cg-N) [8], superhard 

materials (c-BN) [13], and thermoelectric materials (PbTe) [14]. These breakthroughs have 

established high-pressure science as a cornerstone of modern materials science, influencing 

fields from condensed matter physics to energy storage and industrial applications. 

 

 

 

Fig. 1 Under extreme pressures, materials transform into novel states, such as methane hydrates (0.1 

GPa), diamond (5 GPa), symmetric ice (80 GPa), metallic hydrogen (500 GPa), and Al electrides (10 

TPa), adapted from ref. [5] 
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1.1 High-Pressure Science in Modern Research 

The first high-pressure measurement technique (reaching ~10 GPa) was introduced by 

Percy W. Bridgman, who was awarded the Nobel Prize in 1946 for his contributions to high-

pressure physics [15]. Since then, high-pressure research has evolved significantly, utilizing 

both static and dynamic compression methods. Static compression techniques, such as the one 

utilizing the diamond anvil cells (DACs) and large-volume presses (LVPs), are capable of 

applying continuous pressure. DACs are used to reach pressure in the multi-megabar range, 

whereas LVPs typically operate at about 50 GPa, making them ideal for studying systems in 

equilibrium. On the other hand, dynamic compression techniques, such as shock-wave and 

laser-driven approaches, generate much higher pressures (~5000 GPa) and temperatures 

(~1000 K) over microsecond timescales to investigate rapid phase transitions [5].  

The effect of pressure on materials depends on how it is applied. Hydrostatic pressure is 

generated in contact with gas/liquid media and is uniform in all directions. Uniaxial 

compression in a constrained volume is applied along one axis, providing a simpler hydrostatic 

alternative. Quasi-hydrostatic stress refers to a state close to hydrostatic conditions but with 

small differences in principal stresses due to experimental limitations or medium properties, 

allowing for near-isotropic stress distribution with minimal deviatoric stress.  

Recent in-situ measurement advancements, such as synchrotron X-ray diffraction [16] and 

Raman spectroscopy [17], have made it possible to directly observe electronic, vibrational, and 

structural changes in compressed materials [6,18]. Beyond fundamental research, high-

pressure technology has transformed materials engineering by facilitating industrial processes 

such as high-pressure extrusion, hydroforming, and hot isostatic pressing, which enhance 

mechanical strength and electrical performance [19]. 

However, high-pressure experiments still face challenges such as limited sample volumes 

and/or short observation times, which can make direct measurements difficult. These 

difficulties led to close collaboration between theorists and experimentalists. Theoretical 

calculations of new compounds help identify potential targets for synthesis and provide insight 

into their structure and properties once experimental data become available. In this framework, 

density functional theory (DFT) offers a powerful computational approach, providing precise 

atomic-scale simulations of electronic structures, phase transitions, vibrational properties, 

magnetism and superconductivity under extreme pressures. Together, these complementary 

approaches have accelerated discoveries, pushing the boundaries of both fundamental research 

and real-world applications [20,21]. 
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1.2 Molecular Crystals 

Molecular crystals are a type of crystalline solid where molecules are arranged in a periodic 

structure and held together by intermolecular forces such as van der Waals, hydrogen bonding 

and 𝜋 − 𝜋 interactions. These molecular crystals are widely studied in materials science, 

condensed matter physics, chemistry, and pharmaceuticals due to their tunable electronic, 

optical, mechanical, and thermal properties. Molecular crystals play a significant role in 

condensed matter physics enabling the study of quantum phenomena, charge transport 

mechanisms and phase transitions, thus contributing to the development of organic 

semiconductors [22] and superconductors [23] materials. When subjected to high pressure, 

molecular crystals undergo structural transformations due to the reduction in intermolecular 

distances, leading to phenomena such as metallization, or even molecular dissociation [24,25]. 

Their versatility in materials science allows for applications in smart materials, thermoelectric 

energy harvesting, and molecular actuators [26]. In pharmaceuticals, molecular crystals are 

important for drug formulation, as polymorphism directly impact drug solubility, stability, and 

bioavailability, which are important aspects in medicinal efficacy, as observed for example in 

aspirin and paracetamol [27]. By bridging fundamental physics, chemistry and engineering, 

molecular crystals continue to drive innovations in next-generation functional materials. 

One of the most studied molecular systems is hydrogen (H2), the simplest and lightest 

element in the periodic table. At extreme pressures above 350 GPa hydrogen is thought to 

transit into a metallic phase, where molecular bonds break and atoms rearrange into a dense 

atomic solid [28]. This transition is of particular interest as metallic hydrogen is predicted to 

be a room-temperature superconductor [7,24]. Despite the many theoretical and experimental 

studies devoted to this system, the exact nature of its transition to a metallic phase and its 

potential superconducting properties remain active areas of research [29–33]. Similarly, other 

diatomic molecules such as nitrogen (N2), oxygen (O2), and the halogens (F2, Cl2, Br2, I2) also 

undergo remarkable transformations under compression. Nitrogen is a naturally abundant 

element with a highly stable triple bond (N≡N). The molecular crystal of this element 

transforms into a polymeric structure with single N−N bonds at pressures above 110 GPa with 

temperature around 2000 K [34–36]. This polymeric phase of nitrogen is of great interest due 

to its potential as a high-energy-density material. In contrast, modelling indicates that oxygen 

requires much higher pressure (1920 GPa) to form a polymeric spiral chain structure [37–40].  

Halogens are a group of extremely reactive nonmetallic elements in Group 17 of the 

periodic table, including fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and astatine (At). 
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They are highly electronegative with fluorine being the most electronegative element in the 

Pauling scale. Halogen naturally exist as diatomic molecules (X2) and readily react with metals 

to produce ionic salts (e.g., NaCl, KBr) featuring halide ions (X-). Due to their electron-rich 

nature, they participate in a wide range of chemical reactions and exhibit unique physical and 

electronic properties under extreme conditions. 

Interestingly, halogens undergo pressure-induced metallization and dissociation like 

hydrogen. On the other hand, their electron-rich nature connects them to oxygen. However, 

polymerization occurs in halogens at much lower pressures as compared to hydrogen and 

oxygen. Among these elements, Br2 and I2 have been particularly interesting due to their 

relatively lower transition pressures making them more accessible for experimental and 

theoretical studies [41–45] as compared to F2 and Cl2  [46–48]. These elements undergo a series 

of phase transformations from molecular phase of Cmca symmetry through incommensurate 

structures exhibiting iodine chains to monoatomic phases displaying metallic properties. 

Iodine, which is a solid at ambient pressure and temperature, undergoes the following sequence 

of transitions 𝐶𝑚𝑐𝑎 
16 𝐺𝑃𝑎
→    𝐶𝑚𝑐21 

20.8 𝐺𝑃𝑎
→     𝐹𝑚𝑚𝑚(00𝛾)𝑠00 

32 𝐺𝑃𝑎
→    𝐼𝑚𝑚𝑚

43 𝐺𝑃𝑎
→     𝐼4/𝑚𝑚𝑚

55 𝐺𝑃𝑎
→    𝐹𝑚3̅𝑚  [49,50]. 

 Bromine is the only liquid halogen at ambient conditions. At room temperature it 

crystallizes into the molecular Cmca phase when compressed above 0.5 GPa [51]. As pressure 

increases, bromine follows a phase transition pathway similar to iodine. Several 

experimental [52–54] and theoretical  [55–58] studies have been conducted on bromine, with 

ongoing research continuing to explore its high-pressure behaviour [50,59,60]. Despite these 

investigations, several unresolved questions remain regarding bromine’s behaviour under 

extreme conditions. In particular, structural details and thermodynamic significance of 

incommensurate phase (𝐹𝑚𝑚𝑚(00𝛾)𝑠00) that emerges during the Cmca to Immm transition, 

are not fully resolved. A significant discrepancy also exists between experimentally determined 

phase boundary pressures of halogens and those predicted by density functional theory (DFT), 

raising concerns about the accuracy of current computational models. This concern stimulated 

part of our research undertaken in the framework of this thesis.  

To bridge this gap and improve agreement between experimental and theoretical data, in 

our study we utilized the hybrid HSE06 functional to investigate the phase transition of solid 

bromine up to 200 GPa. The detailed results are presented in article A1 (see Appendix 1). These 

results enhance our understanding of bromine’s high-pressure behaviour and contribute to a 
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broader comprehension of the fundamental principles governing molecular solids under 

extreme conditions. 

1.3 Reactivity of Fluorine 

Fluorine is the most electronegative halogen with an electronegativity of 4.0 in the Pauling 

scale. This high electronegativity introduces additional complexity due to strong oxidizing 

power and small atomic size [61]. Its high electron affinity allows it to attract electrons with 

great intensity, making it one of the most chemically reactive elements. Under ambient 

conditions, fluorine exists as diatomic molecules (F2), but due to its high reactivity, it rarely 

remains in molecular form when interacting with other substances at high pressure and 

temperature. Fluorine easily interacts with other elements to form fluorides, often stabilizing 

the element in its highest oxidation state. Well-known examples are sulfur hexafluoride (SF6) 

as an electrical insulator, xenon hexafluoride (XeF6), and uranium hexafluoride (UF6) for 

nuclear fuel processing. Additionally, fluorine-rich compounds offer greater mechanical 

strength which making them essential for wear-resistant coatings, as exemplified by 

polytetrafluoroethylene (PTFE). Furthermore, high-pressure fluorination can significantly 

enhance catalytic efficiency, particularly in energy-related technologies such as fuel cells.  

Theoretical analysis based on DFT modelling, predict that under compression, fluorine 

should undergo significant structural and chemical transformations: a transition from the Cmca 

molecular phase to a monatomic tetragonal (P42/mmc) structure at 2500 GPa followed by a 

cubic phase (Pm3̅n) at 3000 GPa [62]. These transformations attract interest of scientists 

because of its the theoretical and practical implications.  

Calculations indicate that fluorine remains the most electronegative element under high 

pressure [63]. Its small atomic radius and high effective nuclear charge allow it to attract 

electrons more strongly than any other element. Most elements become more electropositive 

under pressure but fluorine electronegativity decreases slightly, allowing it to maintain its 

strong electron affinity [64]. This should lead to novel high-pressure phases with different 

bonding configurations, significantly impacting its molecular and electronic properties in 

extreme conditions.  

One of the most intriguing aspects of fluorine chemistry is its reactivity with other halogens. 

Halogen fluorides (AFx, where A = I, Br, Cl) represent an important class of compounds 

characterized by a wide range of coordination numbers (up to 8) and oxidation states (up to 

+7), making them valuable for exploring electron-rich bonding compound [65]. Both bromine 
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fluorides (BrFx, x=1, 3, and 5), as well as iodine (IFx, x=1, 3, and 5), and chlorine (ClFx, x=1, 

3, and 5) fluorides have been extensively studied in the gas phase [66–69] and in the solid 

state [70–73]. However, despite their importance, many aspects of their high-pressure phase 

transitions and bonding mechanisms remain unexplored.  

To address these knowledge gaps in the theoretical description of halogen fluorides, we 

employed density functional theory (DFT) to model the high-pressure reactivity of bromine 

and fluorine up to 100 GPa. A comprehensive analysis of bromine fluorides behaviour under 

extreme conditions is provided in article A2 (see Appendix 2). 

1.4 Mechanical Properties 

Mechanical properties describe how materials respond to external applied forces that 

generate stresses. These properties, including elasticity, stiffness, hardness, ductility, and 

toughness are essential for understanding the structural integrity and performance of materials 

under varying conditions. In high-pressure research, mechanical properties play a crucial role 

in determining phase stability, deformation mechanisms, and structural transformations. The 

ability of a material to resist deformation or undergo phase transitions under pressure is often 

related by its elastic constants, bulk modulus, and shear modulus. These parameters help in 

predicting whether a material remains mechanically stable or transforms into a new structural 

phase. 

Among the mechanical properties of solids, bulk modulus (B) is particularly significant, as 

it measures material’s resistance to uniform pressure. A high bulk modulus indicates low 

compressibility and greater structural rigidity, while a low bulk modulus suggests that a 

material is more susceptible to pressure-induced volume reduction. For example, diamond 

(bulk modulus at ambient pressure, B0, equal to 446 GPa) has the highest known bulk modulus, 

making it exceptionally resistant to compression, which is why it is commonly used in diamond 

anvil cell (DAC) experiments for generating extreme pressures. In contrast, crystals of noble 

gases like argon and helium have very low bulk moduli, making them highly compressible and 

useful as pressure-transmitting media in high-pressure studies.  

The accuracy of mechanical property measurements at high pressures depends on 

maintaining hydrostatic conditions, where stress is applied uniformly in all directions. Under 

such conditions, elastic moduli such as bulk modulus and shear modulus can be precisely 

determined. However, at sufficiently high pressures all known pressure-transmitting media 

solidify, leading to non-hydrostatic stresses that may distort mechanical property 
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measurements [74]. To minimize these effects, soft pressure-transmitting media like argon, 

helium, and NaCl are commonly used in high-pressure experiments [75–77]. These media help 

ensure accurate assessment of elastic properties and phase transitions by reducing differential 

stress effects. 

Elastic properties also play a critical role in phase stability and mechanical strength. At 

extreme pressures, materials often undergo increased hardness and reduced plasticity, leading 

to the formation of superhard phases such as cubic boron nitride (c-BN) and diamond-like 

carbon structures, which have applications in industrial coatings, high-strength tools, and 

advanced electronics. Furthermore, mechanical properties are correlated with electronic band 

structures and vibrational modes, which are key factors in understanding metallization, 

superconductivity, and high-pressure chemistry. To explore these effects, we conducted 

hybrid-DFT calculations to analyze the pressure-dependent thermal and mechanical behaviour 

of bromine up to 90 GPa. Further insights into the mechanical properties of bromine under high 

pressure are presented in article A3 (see Appendix 3). 

1.5 Objectives, Hypothesis, and Scope of the Work 

The primary objective of this study is to investigate the high-pressure behaviour of solid 

bromine (Br2) and bromine fluorides (BrFx) compounds with a particular focus on their 

structural phase transition, electronic, and mechanical properties, as well as reactivity under 

extreme conditions.  

Specifically, this work aims to:  

1. Explain the high-pressure phase transitions of solid bromine (Br2) up to 200 GPa, 

resolving discrepancies between experimental results and density functional theory 

(DFT) predictions. 

2. Explore the reactivity of bromine and fluorine, and the possible formation of 

compounds (BrFx) at high pressure, identifying new high-pressure phases, bonding 

mechanisms, and electronic transformations up to 100 GPa. 

3. Analyse the mechanical properties and pressure dependent behaviour of bromine as a 

molecular crystal up to 90 GPa, focusing on bulk modulus, elastic moduli, and 

deformation behaviour through density functional theory (DFT) calculations used in 

conjunction with the quasi-harmonic approximation (QHA). 
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Through these objectives, this research aims to bridge the gap between theoretical 

predictions and experimental observations, leading to a more comprehensive understanding of 

halogen materials under extreme conditions.  

We hypothesize that high-pressure phase transitions in bromine and bromine-fluoride 

compounds follow distinct pathways that differ from previous theoretical predictions. 

Specifically, we expect: 

1. Solid bromine (Br2) will undergo a series of phase transitions with pressure-dependent 

structural modifications up to 200 GPa, refining discrepancies between experimental 

observations and DFT calculations. 

2. Bromine fluoride compounds (BrFx) will exhibit unexpected bonding behaviour and 

electronic transformations under extreme pressures, potentially leading to new 

metastable phases. 

3. Mechanical properties of bromine, including bulk modulus and mechanical stability, 

will follow a pressure-dependent trend, significantly influencing its elastic deformation 

under extreme conditions. 

1.6 Publications 

This research has resulted in three published journal articles (listed below), accumulating 

100 and 140 ministerial points (MNiSW). These articles are included in Appendices 1 – 3 of 

this dissertation. An additional unpublished manuscript, currently in review in the journal 

Physical Review B, describes experimental validation of the phase transition in bromine, 

demonstrating an anharmonic, entropically driven approach to the close-packed metallic state. 

This work highlights how subtle enthalpy differences and lattice flexibility impact halogen 

behaviour under extreme conditions, offering new insight into high-pressure material physics. 

This work is included as Appendix 4. 

1. Madhavi H. Dalsaniya, Krzysztof Jan Kurzydłowski, Dominik Kurzydłowski, 

Insights into the high-pressure behaviour of solid bromine from hybrid DFT 

calculations. Physical Review B, 106(11), 115128 (2022), IF = 3.2, MNiSW = 140. 

DOI: 10.1103/PhysRevB.106.115128 

2. Madhavi H. Dalsaniya, Deepak Upadhyay, Krzysztof Jan Kurzydłowski, Dominik 

Kurzydłowski, High-pressure stabilization of open-shell bromine fluorides. Physical 
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Chemistry Chemical Physics, 26(3), 1762-1769 (2024), IF= 3.6, MNiSW = 100. DOI: 

10.1039/D3CP05020C 

3. Madhavi H. Dalsaniya, Deepak Upadhyay, Paras Patel, Prafulla K Jha, Krzysztof Jan 

Kurzydłowski and Dominik Kurzydłowski, Pressure-Dependent Thermal and 

Mechanical Behaviour of a Molecular Crystal of Bromine. Molecules, 29(19), 4744 

(2024), IF = 4.2, MNiSW = 140. DOI: 10.3390/molecules29194744 

4. Eric Edmund, Madhavi H. Dalsaniya, Ross. T. Howie, E. Greenberg, Vitali 

Prakapenka, Miriam Peña-Alvarez, Michael Hanfland, Philip Dalladay-Simpson, 

Dominik Kurzydłowski and Andreas Hermann, Close Packed Atomic Bromine up to 

230 GPa. (Physical Review B; Status: Under Review), (2025), IF = 3.2, MNiSW = 140. 

1.7 Conference Presentations and Summer Schools 

I have presented my research at three international conferences and two summer schools, 

both as oral and poster presentations: 

1. Oral presentation: Understanding the Chemistry and Bonding of Nitride and 

Polynitride Materials at the 61st EHPRG Meeting that has taken place in Thessaloniki, 

Greece, at the Porto Palace Hotel (September 1-6, 2024). 

2. Poster presentation: Exploring Solid Bromine and Bromine Fluorides Under High 

Pressure at the LOBSTER School 2024, Aalto University, Finland, (March 12-14, 

2024). 

3. Oral presentation: Theoretical investigation on the reactivity of fluorine and bromine 

at high pressure: emergence of novel bromine fluorides at the Joint 28th AIRAPT and 

60th EHPRG International Conference on High Pressure Science and Technology, 

Edinburgh, UK (July 23-28, 2023). 

4. Summer School Participation: Attended the Scottish Universities Summer School in 

Physics 78 (SUSSP 78) at the Centre for Science at Extreme Conditions an institute 

within the School of Physics and Astronomy at the University of Edinburgh, UK (July 

18-23, 2023). 

5. Oral presentation: Insights into the high-pressure behaviour of solid bromine from 

hybrid DFT calculations at the 59th European High Pressure Research Group Meeting 

(59th EHPRG) on High Pressure Science and Technology, Uppsala, Sweden, 

(September 5-8, 2022) received Best Oral Presentation Award. 
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2. Computational Methods and Formalisms 

In the computational part of the thesis, we used density functional theory (DFT), a quantum 

mechanical framework, to predict the ground-state properties of materials at the atomic scale. 

Computational tools such as LOBSTER for bonding analysis and XtalOpt an evolutionary 

algorithm for high-pressure structural prediction, were employed. Vibrational and elastic 

property calculations were performed using Phonopy (version 2.18.0). 

2.1 The Schrödinger Equation 

Condensed matter systems are fundamentally described by quantum mechanics, where 

atomic interactions are dictated by Coulomb’s law, which governs the electrostatic forces 

between charged particles. Quantum mechanics provides a robust framework for understanding 

simple systems, such as a single electron in a hydrogen atom, where the Schrödinger equation 

can be solved exactly to determine the quantum state [1]. However, the situation becomes 

significantly more complex for systems with multiple electrons. In such many-electron 

systems, the electrons interact not only with the positively charged nuclei but also with one 

another, leading to highly intricate correlation effects and exchange interactions. These 

complexities make the Schrödinger equation mathematically intractable for direct solutions. 

This raises the question of how can we study electron dynamics in atoms, molecules, and 

condensed matter systems which are many-electron systems. To address this, we start with the 

time-independent Schrödinger equation: 

𝐻̂𝜓(𝑟) = 𝐸𝜓(𝑟)  (2.1) 

where  𝐻̂ is the Hamiltonian operator (containing the sum of the kinetic and potential energies), 

𝜓 (𝑟) is the wavefunction describing the quantum state of the electrons and ions and 𝐸 is the 

total energy eigenvalue of the system. The Hamiltonian can be expressed as; 

𝐻̂ = −
ℏ2

2𝑚
𝛻2 + 𝑉(𝑟)  (2.2) 

In this Hamiltonian, the kinetic energy operator is represented by the −
ℏ2

2𝑚
𝛻2 term, while 𝑉(𝑟) 

term represent the potential energy of quantum system as a function of the position vector r. 

In any physical system, where atoms are periodically arranged, the wavefunction depends 

on the coordinates of all particles in the system. This includes both the electrons and atomic 
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nuclei positions: 𝜓 = 𝑓(𝑟1 ,𝑟2, … . , 𝑟𝑁 , 𝑅1, 𝑅2, … . , 𝑅𝑁), as well as spin degrees of freedom. The 

many-body Hamiltonian for such systems includes contributions from the kinetic energy of 

electrons (𝑇̂𝑒) and ions (𝑇̂𝑛), as well as potential energy terms for electron-electron (𝑉̂𝑒,𝑒), 

electron-ion (𝑉̂𝑒,𝑛) and ion-ion 𝑉̂𝑛,𝑛 interactions [79]: 

𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑛 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝑉̂𝑛,𝑛  (2.3) 

This leads to the full time-independent Schrödinger equation:  

𝐻̂𝜓(𝑟) = { − 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 − 

ℏ2

2𝑀𝑙
 ∑

𝜕2

𝜕𝑅𝑙
2𝑙 +

1

2
 ∑

𝑒2

4𝜋𝜀0
𝑙,𝑙′

𝑙≠𝑙′ 

𝑍𝑙𝑍𝑙′

|𝑅𝑙− 𝑅𝑙′|
+
1

2
 ∑

𝑒2

4𝜋𝜀0
𝑖,𝑗
𝑖≠𝑗 

1

|𝑟𝑖− 𝑟𝑗|
−

 ∑ ∑
𝑒2

4𝜋𝜀0
 

𝑍𝑙

|𝑟𝑖− 𝑅𝑙′|
𝑙𝑖  } 𝜓(𝑟) = 𝐸𝜓(𝑟)   (2.4) 

In this equation, ℏ is the reduce Planck’s constant, me and Ml are masses of electrons and 

ions, Z is the charge of ion, e is the charge of electron and r, R denote the positions of electrons 

and ions. The terms |𝑅𝑙 − 𝑅𝑙′|, |𝑟𝑖 − 𝑟𝑗| and |𝑟𝑖 − 𝑅𝑙′| represent the distances between ions, 

electron, and that between electrons and ions, respectively. Solving this equation reveals the 

ground-state energy of the system. From this, the ground-state properties of the material under 

equilibrium conditions can be determined. Due to the equation's complexity, especially in large 

systems, it’s hard to solve. Therefore, several approximations to this theory were proposed 

which are discussed in detail in the proceeding sections. 

2.2 Born-Oppenheimer Approximation 

The first major approximation, introduced by Max Born and J. Robert Oppenheimer in 

1927 [80], simplifies the many-body Schrödinger equation by separating electronic and nuclear 

motion. It is based on the fact that the ratio of ion mass to electron mass is approximately 104, 

meaning ions move significantly slower than electrons. This allows electrons to be treated 

independently, assuming static ions. Under this approximation, the kinetic energy of the ion 

term is negligible, and the ion-ion potential becomes a constant. The modified equation (2.3) 

is written as: 

𝐻̂ = 𝑇̂𝑒 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (2.5) 

Grouping nuclear contributions into an external potential simplifies the Hamiltonian further: 
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𝐻̂ = 𝑇̂𝑒 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒𝑥𝑡  (2.6)  

𝐻̂𝜓(𝑟) = { − 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 +

1

2
 ∑

𝑒2

4𝜋𝜀0
𝑖,𝑗
𝑖≠𝑗 

1

|𝑟𝑖− 𝑟𝑗|
− ∑ ∑

𝑒2

4𝜋𝜀0
 

𝑍𝑙

|𝑟𝑖− 𝑅𝑙′|
𝑙𝑖  }  (2.7) 

This approximation significantly simplifies the many-body Schrödinger equation by 

focusing on electronic motion while treating ion as static. However, in most cases this 

approximation is still insufficient to solve the Schrödinger equation and therefore more 

approximations are needed which leads us to Hartree and Hartree-Fock approaches. 

2.3 Wavefunction-Based Approach 

2.3.1 Hartree Approximations 

The Hartree approximation further simplifies the many-electron Schrödinger equation by 

treating electrons as independent particles moving in an average field [81–84]. The many-

electron wavefunction is approximated as a product of single-particle wavefunctions: 

𝜓 (𝑟1, 𝑟2, … . , 𝑟𝑁) ≈ 𝜓1(𝑟1)𝜓2(𝑟2)… . 𝜓𝑁(𝑟𝑁)  (2.8) 

This leads to a single-electron equation: 

(− 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 + 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝐻)𝜓𝑖(𝑟) = 𝐸𝑖𝜓𝑖(𝑟)  (2.9) 

here, the Hartree potential 𝑉̂𝐻 is defined as: 

𝑉̂𝐻 = ∫
𝜌(𝑟′)

|𝑟− 𝑟′|
 𝑑3𝑟′  (2.10) 

here 𝜌(𝑟′) represent the electron density and is given by: 

 𝜌(𝑟′) = ∑ |𝜓𝑖(𝑟
′)|2𝑖  (2.11) 

where 𝜓𝑖(𝑟
′) are the single-electron wavefunctions. While this method uses a mean-field 

approximation, it does not account for electron correlations or the Pauli exclusion principle. 

Consequently, this method also neglects exchange interactions, necessitating additional 

refinements for more accurate descriptions [85,86].  
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2.3.2 Hartree-Fock Approximation 

The Hartree-Fock method improves upon Hartree by incorporating the Pauli exclusion 

principle and exchange interactions through antisymmetric wavefunctions [87,88]: 

𝜓 (𝑟1, 𝑟2, … , 𝑟𝑁 ) =  
1

√𝑁!
 |

𝜓1(𝑟1) 𝜓2(𝑟1) … 𝜓N(𝑟1)

𝜓1(𝑟2) 𝜓2(𝑟2) … 𝜓N(𝑟2)
⋮ ⋮ ⋱ ⋮

𝜓1(𝑟N) 𝜓2(𝑟N) … 𝜓𝑁(𝑟𝑁)

|   (2.12) 

The normalization factor 
1

√𝑁!
  ensures that the wavefunction maintains its statistical validity. 

By minimizing the total energy using the Lagrange multiplier method, the Hartree-Fock 

equations are derived: 

(− 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 + 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝐻)𝜓𝑖(𝑟) − ∑ ∫

𝜓𝑗
∗(𝑟′) 𝜓𝑖(𝑟

′) 

|𝑟− 𝑟′|
𝑑3𝑟′𝜓𝑗(𝑟)𝑗 = 𝐸𝑖𝜓𝑖(𝑟)   (2.13) 

 Hartree-Fock accounts for exchange interactions but ignores Coulomb electronic 

correlation, meaning it does not fully capture electron-electron interactions beyond the mean-

field approximation. This leads to inaccuracies in computed energies, especially for strongly 

correlated systems. Density functional theory (DFT) addresses these challenges by 

reformulating the many-body problem in terms of the electronic density rather than 

wavefunctions. This makes it computationally more efficient while approximating both 

exchange and correlation effects through functionals. 

2.4 Density Functional Theory 

Hohenberg and Kohn introduced new theory in 1964, for solving many-electron systems 

through the electron density 𝑛(𝑟), which depends only on 3 spatial coordinates. This theory is 

known as density functional theory (DFT). This was a breakthrough in the field due to its cost 

effectiveness as many electron systems could be reduced to single electron density. The 

Thomas-Fermi theory, Hohenberg-Kohn theorems and Kohn-Sham equations, constitute the 

basic framework of DFT. All these theories will be discussed in next subsections.  

2.4.1 Thomas-Fermi Theory 

Before the Hohenberg and Kohn theorems, Thomas and Fermi introduced in 1927 the first 

ever theory based on electron density (i.e. the function describing the probability of finding an 
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electron in an infinitesimally small spatial region)  [89,90]. The theory introduced electron 

density instead of single particle wave function as a basic variable. In the case of N interacting 

electrons, the kinetic energy in terms of electron density 𝑛(𝑟) is given by: 

  𝑇𝑇𝐹 = 𝐶𝑘 ∫𝑛(𝑟)
5

3 𝑑3𝑟   (2.14) 

Where the constant 𝐶𝑘 is 

𝐶𝑘 = 
3

10
(3𝜋2)2/3

ℏ2

2𝑚
 

 

Now, the total energy can be written as a functional of 𝑛(𝑟) in form of the summation of kinetic 

energy, external potential (𝑉𝐼𝐸) and electrostatic energy, which is, 

𝐸 =  𝑇𝑇𝐹 + ∫ 𝑉𝐼𝐸 (𝑟) 𝑛(𝑟) 𝑑
3𝑟 + 

1

2
 ∬

𝑒2

4𝜋𝜀0
 
𝑛(𝑟′) 𝑛(𝑟)

|𝑟− 𝑟′|
  𝑑3𝑟 𝑑3𝑟′   (2.15) 

Thomas-Fermi theory was the groundwork of the DFT; however, the semi-classical 

expression of the energy was its drawback. 

2.4.2 Hohenberg-Kohn Theorems 

The density-based approach then further elaborated by the Pierre Hohenberg and Walter 

Kohn in terms of two theorems which serve as the theoretical core of the DFT [91]. The 

theorems are as follows: 

 

Theorem I: Existence and Uniqueness: the ground-state electron density 𝑛(𝑟) uniquely 

determines the external potential 𝑉̂𝑒𝑥𝑡(𝑟) acting on the system. The exact statement is the: “The 

external potential 𝑉̂𝑒𝑥𝑡(𝑟) is a unique functional of the electron density 𝑛(𝑟). As a result, the 

total ground state energy E of any many body systems is also a unique functional of 𝑛(𝑟), that 

is, 𝐸 = 𝐸[𝑛].”   

 

Theorem II: Variational Principle: the system's ground-state energy is achieved at the lowest 

value of the energy functional, which occurs exclusively when the input density is equal to the 

ground-state density 𝑛(𝑟). The statement is as follows: “The functional 𝐸[𝑛] for the total 

energy has a minimum equal to the ground-state energy at the ground-state density.”  
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The theorem provides a foundation for a variational strategy, allowing the optimization of 

an initial density to the true density using a self-consistent approach, as implemented in various 

DFT software tools. 

2.4.3 Kohn-Sham Approach 

Using Hohenberg-Kohn theorems, Kohn and Sham (KS) came up with a better approach 

where they replace N-electrons with fictious system of one electron [92,93]. In the KS method, 

a single-particle potential 𝑉𝑒𝑓𝑓(𝑟) is defined, which generates the same ground-state electron 

density as the interacting system. As a result, the total energy is formulated within this 

framework as follows:  

𝐸𝐾𝑆[𝑛] = 𝑇𝑆[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] + ∫𝑉𝑒𝑥𝑡 (𝑟) 𝑛(𝑟) 𝑑
3𝑟   (2.16) 

where 𝑇𝑆[𝑛] is non-interacting kinetic energy and 𝐸𝐻[𝑛] is energy term under Hartree 

approximation. The 𝑇𝑆[𝑛] and 𝐸𝐻[𝑛] can be defined as, 

𝐸𝐻[𝑛] =  
1

2
 ∬

𝑛(𝑟′) 𝑛(𝑟)

|𝑟− 𝑟′|
  𝑑3𝑟 𝑑3𝑟′    (2.17)  

𝑇𝑆[𝑛] =  − 
1

2
 ∑ 〈𝜙𝑖| ∇

2|𝜙𝑖〉
𝑁
𝑖     (2.18) 

𝑛(𝑟) = ∑ |𝜙𝑖  (𝑟)|
2𝑁

𝑖    (2.19) 

𝑁 = ∫𝑛 (𝑟) 𝑑3𝑟   (2.20) 

Here, 𝑇𝑆[𝑛] was described in the context of KS orbitals. The term 𝐸𝑥𝑐 is a summation of 

two energies, namely exchange energy 𝐸𝑥 and correlation energy 𝐸𝑐. The exchange energy is 

consequence of the anti-symmetric characteristics of the wave function as it changes the under 

the position exchange. The correlation energy is due to the repulsive force between the two 

electrons in the orbit. The term that puts DFT above HF is 𝑉𝑥𝑐, which is the functional derivative 

of the 𝐸𝑥𝑐. However, the exact form of exchange correlation functional is unknown. The term 

𝑉𝑥𝑐 can be written as; 

   𝑉𝑥𝑐[𝑛(𝑟)] =  
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
   (2.21)  

The motion of electrons occurs within an effective potential 𝑉𝑒𝑓𝑓 , which indirectly includes 

the effects of electronic interactions. The electron-electron interactions in the KS equations are 
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replaced by a coupling between electrons and an effective medium. The KS equation in the 

Schrödinger form is written as; 

𝐻̂𝐾𝑆𝜙𝑖(𝑟) = 𝐸𝐾𝑆 𝜙𝑖(𝑟)   (2.22) 

and the Hamiltonian is;  

𝐻̂𝐾𝑆 = −
1

2
 ∑ ∇2 + 𝑉𝑒𝑓𝑓  (2.23) 

In Hamiltonian, the sum of the three potentials (𝑉𝑒𝑥𝑡 + 𝑉𝐻 + 𝑉𝑥𝑐) is included as the 𝑉𝑒𝑓𝑓 

term. By iteratively adjusting the non-interacting electron density to match the ground state 

density of the real interacting system, the self-consistent method is used to solve the 

Hamiltonian. Starting with an initial density guess, the potential terms are recalculated until 

the energy stabilizes at a convergent value. By transforming the many-electron problem into a 

one-electron problem, the KS approach achieves significant efficiency. Despite its 

effectiveness, the true form of the exchange-correlation functional (𝑉𝑥𝑐) cannot yet be 

determined precisely, requiring approximations that are addressed in the subsequent section. 

2.5 Exchange-Correlation Functionals 

To determine the accurate results using KS approach one needs to identify the true 

exchange-correlation functional. Over the time, many theories have been explored to predict 

the correct results. The idea of Jacob's ladder [94] helps organize and interpret these techniques  

Fig. 2 The "Jacob’s ladder" of density functional approximations. Higher levels mean greater accuracy and cost. 
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highlighting how aiming for higher accuracy (moving to higher rungs of the ladder) leads to 

greater computational requirements for the analyzed system. The exchange-correlation can be 

classified in the three different categories based on the degree of information they incorporate 

about the electron density: local, semi-local and non-local functionals. The local functional 

involve local density approximation (LDA), semi-local functionals involving generalized 

gradient approximation (GGA) and meta-GGA, while non-local involves hybrid functionals. 

2.5.1 Local Density Approximation (LDA) 

The LDA, developed by Kohn and Sham, is a fundamental method for approximating 𝐸𝑥𝑐. 

This approach assumes that the electron density varies so slowly that it can be considered 

uniform within small spatial regions [95]. In this regard, an effective way to approximate the 

electron density involves modeling it locally as a homogeneous electron gas. The 𝐸𝑥𝑐 is then 

computed by integrating energy density over the entire spatial domain of this gas. The 𝐸𝑥𝑐 for 

LDA can be written as; 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)] = ∫𝑛(𝑟) 𝜖𝑥𝑐[𝑛(𝑟)]𝑑

3𝑟   (2.24) 

where 𝜖𝑥𝑐 is exchange-correlation energy per particle for electron gas with density 

𝑛(𝑟)  [94]. The LDA excels in modeling the physical properties of metals and systems 

analogous to a homogeneous electron gas. This capability likely stems from the localized 

nature of exchange-correlation interactions in such materials. Despite its versatility across 

many material types, LDA falters when confronted with systems exhibiting non-uniform 

electron density or significant electron correlation effects. Notable failures include the 

underestimation of band gaps in semiconductors and insulators and inaccuracies in determining 

lattice constants and bond lengths in weakly bonded molecular systems [96]. 

2.5.2 Generalized Gradient Approximation (GGA) 

We know that real systems inherently lack perfect homogeneity and exhibit varying density 

distributions surrounding electrons. Recognizing this, Herman in 1969 proposed the foundation 

for the GGA. This method enhances the accuracy of exchange-correlation functionals by 

considering both the electron density and its gradient, combining local and semi-local 

aspects [97]. The GGA approximated 𝐸𝑥𝑐 can be given as; 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝑟)] = ∫𝑛(𝑟) 𝜖𝑥𝑐[𝑛(𝑟), ∇ [𝑛(𝑟)]]𝑑

3𝑟   (2.25) 
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The more accurate results as compared to LDA stems from inclusion of non-local effects 

in the exchange-correlation energy which it models using the gradient of the electron density. 

Several notable functionals, including PW91 developed by Perdew and Wang in 1991 [98,99] 

and the PBE functional by Perdew, Burke and Ernzerhof constructed in 1996 [100], have been 

developed within the GGA framework. The generalized-gradient approximation effectively 

predicts properties such as lattice structures, magnetic behaviour, and elastic constants, often 

aligning well with experimental results across a variety of materials. However, its limitations 

become evident in certain areas, such as underestimating band gaps and bond lengths in 

semiconductors and insulators. Furthermore, it struggles to describe systems with strongly 

correlated electrons, like high-temperature superconductors and heavy fermion compounds. In 

general, LDA provides foundation for the GGA in which enhancement factor F(s) directly 

modifies the LDA energy as: 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝑟), 𝑠] = ∫ 𝑛(𝑟) 𝜖𝑥𝑐

𝐿𝐷𝐴[𝑛(𝑟)]𝐹(𝑠)𝑑3𝑟; where 𝑠 = 𝐶 
|∇𝑛(𝑟)|

𝑛4/3 (𝑟)
  (2.26) 

While this form generally represents GGA, it is important to note that PW91 does not 

strictly follow this formulation. Instead of directly using an enhancement factor 𝐹(𝑠), PW91 

utilizes a more complex integral approach to derive the exchange-correlation functional. In 

contrast, PBE clearly follows this formulation, defining 𝐹(𝑠) in a way that these constraints are 

directly incorporated. To achieve even greater accuracy, meta-GGA and hybrid functionals 

were developed, which are discussed in the following sections. 

2.5.3 meta-GGA functionals (SCAN, r2SCAN) 

Meta-GGA functionals are other semi-local functionals that extend the GGA by integrating 

kinetic energy density along with the gradients and Laplacians of the electron density. These 

additional terms in meta-GGA enhance the ground-state properties of molecules, surfaces, and 

solids beyond LDA and GGA, making them valuable for studying complex materials. 

The first meta-GGA functional PKZB [101] (Perdew-Kurth-Zupan-Blaha) was introduced 

in 1999, improving upon GGA by using kinetic energy density, enhancing atomization energies 

and reaction barriers, but it did not strictly satisfy exact constraints. In 2003, the TPSS [102] 

(Tao-Perdew-Staroverov-Scuseria) functional was developed to obey exact constraints while 

balancing accuracy and efficiency for both molecules and solids. In 2006 the M06-L 

functional [103] was introduced by Truhlar’s group as a pure meta-GGA, optimized for 

transition metals, thermochemistry and kinetics offering further improvements in chemical 



33 

 

accuracy. However, a major breakthrough came in 2015 with the development of the Strongly 

Constrained and Appropriately Normed (SCAN) functional [104] by Sun, Ruzsinszky, and 

Perdew. SCAN was the first nonempirical meta-GGA that satisfied all 17 known exact 

constraints applicable to this class of functionals. Despite its success, SCAN introduces 

numerical instabilities which leads to the development of its regularized version (rSCAN) and 

further regularized-restored (r2SCAN) functional [105,106] to improve stability while 

maintaining high accuracy. The meta-GGA functional can be given as, 

𝐸𝑥𝑐
𝑚𝑒𝑡𝑎−𝐺𝐺𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟) 𝜖𝑥𝑐[𝑛(𝑟), ∇ [𝑛(𝑟)], ∇

2 [𝑛(𝑟)]]𝑑3𝑟   (2.27) 

2.5.4 Hybrid functionals (B3LYP, HSE06) 

To address the limitations of standard exchange-correlation functionals, a group of non-

local hybrid functionals was developed. The term "hybrid" denotes a blend of density 

functional and orbital-dependent Hartree-Fock exchange energies, motivated by the exact 

treatment of exchange energy in Hartree-Fock. A notable example is the widely recognized 

empirical B3LYP functional introduced by Becke [107] , which takes the form, 

𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 = 𝐸𝑥𝑐

𝐿𝐷𝐴 + 𝑎0(𝐸𝑥
𝐻𝐹 − 𝐸𝑥

𝐺𝐺𝐴) + 𝑎𝑥(𝐸𝑥
𝐺𝐺𝐴 − 𝐸𝑥

𝐿𝐷𝐴) + 𝑎𝑐(𝐸𝑐
𝐺𝐺𝐴 − 𝐸𝑐

𝐿𝐷𝐴)  (2.28) 

A new subclass of range-separated hybrid functionals has been introduced, characterized 

by a distance-dependent exchange mixing. These functionals employ Hartree-Fock exchange 

for the short-range (SR) interactions, while transitioning back to pure density functional 

exchange for the long-range (LR) components. One of the examples of this family of methods 

is the well-known HSE06 functional is given by Heyd, Scuseria, and Ernzerhof [108]. 

𝐸𝑥𝑐
𝐻𝑆𝐸06 = [1 4⁄ 𝐸𝑥

𝐻𝐹(𝜇) + 3 4⁄ 𝐸𝑥
𝐺𝐺𝐴(𝜇)]

𝑆𝑅
+ [𝐸𝑥

𝐺𝐺𝐴]𝐿𝑅 + 𝐸𝑐
𝐺𝐺𝐴   (2.29) 

The parameter μ, often around 0.2 Å-1, determines the range-separation and corresponds to 

a characteristic distance (2/μ), beyond which short-range interactions diminish significantly. 

The limit 𝜇 → ∞ leads to calculation of pure PBE-GGA calculations. The HSE06 functional 

has proven successful in computing accurate properties of materials in good agreement with 

experimental results. M. Liu et. al [109] recently conducted a comprehensive study examined 

1135 materials including metals, semiconductors, and insulators to evaluate the accuracy of the 

HSE06 functional in predicting material properties. This study confirmed that HSE06 

calculated band gaps have a mean absolute error (MAE) of 0.687 eV as compared to 
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experimental values, which is significantly lower than the 1.184 eV error associated with PBE 

calculations. Furthermore, HSE06 enhances the accuracy of formation energy predictions, 

which are necessary for determining thermodynamic stability of materials. While PBE 

systematically underestimates formation enthalpies, resulting an MAE of 0.175 eV/atom, 

HSE06 reduces this error to 0.147 eV/atom, providing a more precise description of material 

energetics. 

2.6 Modelling Solid Materials with DFT 

2.6.1 Electron-Ion Interactions 

The exact solution of KS equations demands accurate description of external potential, Vext 

which mimics the electron-ion interactions in solids. However, it is difficult to determine Vext 

in solids owing to the large number of electrons and their large oscillatory behaviour near 

atomic nuclei. We know that the core electrons are inert and have little impact on material’s 

physical properties while valence electrons actively participate in these phenomena and are 

responsible for the most of the material’s properties. Therefore, DFT provides a practical 

approach by treating valence and core electrons separately and simplifying their influence in 

solid-state systems. It is imperative to expand the auxiliary KS orbitals using established basis 

functions for the accurate solution of KS equations. The primary methods for evaluating 

electron-ion interactions are the pseudopotential technique, which is discussed in following 

section. 

2.6.2 Plane Waves and Pseudopotential Method 

In general, a crystal is formed through the systematic repetition of a unit cell in three-

dimensional space, creating a periodic atomic arrangement. This periodic structure imposes a 

recurring potential on the electrons within the crystal. By applying Bloch’s theorem, the 

periodicity can be leveraged to simplify the solution of the KS equations. Bloch’s theorem 

describes the electronic wavefunction in such a lattice as a combination of a plane wave and a 

periodic function aligned with the lattice structure. Therefore, electronic wavefunction can be 

written in terms of plane waves as; 

𝜑𝑛,𝒌(𝒓) =  ∑ 𝐶𝑛,k+𝐺𝑒
𝑖(𝐾+𝐺)∙𝑟

𝐺   (2.30) 
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where, 𝐶𝑛,𝑘+𝐺 are expansion coefficient, k is wave vector within the first Brillouin zone and G 

is the reciprocal lattice vector. 

This equation theoretically requires an infinite number of plane waves to describe the 

electronic states precisely. However, in practical calculations only plane waves with lower 

kinetic energy contribute significantly. The kinetic energy of a plane wave (Ekin) is given by: 

𝐸𝑘𝑖𝑛 =
ℏ2

2𝑚
|𝑘 + 𝐺|2  (2.31) 

In calculations utilizing the plane wave basis set only plane waves with a kinetic lower than a 

certain cut-off value (Ecut) is taken into account. A higher cutoff energy 𝐸𝑐𝑢𝑡 includes more 

plane waves, improving accuracy and ensuring convergence of the total energy, forces, and 

stress tensors. However, larger 𝐸𝑐𝑢𝑡 also increases computational cost. 

In the system with tightly bound core and valence orbitals near the atomic nucleus, very 

rapid oscillations in the wavefunctions are required to preserve orthogonality with core orbitals. 

This necessitates a vast number of plane waves (high Ecut values) to capture the rapid variations 

in these regions. We know that physical properties of a material are primarily influenced by 

the wavefunction in the interstitial regions between atoms, rather than near the frozen core. 

Therefore, the wavefunction can be approximated to be smooth and slowly varying around the 

frozen core while still accurately reflecting the true wavefunction outside this region. These 

approximations result in pseudo wavefunctions that are free of nodes or abrupt changes near 

the core, significantly reducing the number of plane waves required to represent the 

wavefunction. The potentials which produce such pseudo wavefunctions are known as 

pseudopotentials. Therefore, pseudopotential method is highly effective for its computational 

efficiency and practicality among others in DFT. The schematic of pseudopotential concept is 

shown in Fig. (1). The blue and red color indicates the wavefunction for coulomb potential of 

nucleus and pseudo wavefunction, respectively. To construct pseudopotentials effectively, the 

following criteria must be satisfied: (1) the valence wave function should remain unchanged 

outside the core radius rc, (2) the pseudo wavefunction must precisely match the true 

wavefunction at the core boundary, (3) both the pseudo wavefunction and its first derivative 

should be continuous at the boundary, and (4) the pseudo wave function should be node-free 

within the core [95]. The pseudo-wave functions are tailored to align with all-electron 

wavefunctions beyond the core radius rc and to ensure smooth behavior within it. Numerous 

approaches, including norm-conserving [110], ultrasoft and projector-augmented wave 

pseudopotentials have been introduced over the years  [111,112]. The concept of 
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pseudopotentials enables the creation of smooth wavefunctions devoid of nodes, which can be 

expanded using a plane wave framework. Despite easing certain computational hurdles, the 

method still necessitates a significant number of plane waves to achieve precision, making it 

less practical. An alternative approach, known as the projector augmented wave (PAW) 

method [113], involves transforming the highly oscillatory wavefunctions into auxiliary 

wavefunctions. This transformation allows the auxiliary wavefunctions to exhibit rapid 

convergence when expressed as a plane-wave expansion. These smooth wavefunctions are 

computationally efficient and well-suited for plane-wave-based methods. The PAW method is 

recognized for its exceptional accuracy and has become a cornerstone in DFT calculations. 

 

Fig. 3 A schematic illustration of the concept of pseudopotential, adapted from ref. [34] 

2.6.3 van der Waals Corrections 

In the conventional framework of DFT, long-range dispersion forces are not properly 

accounted for, which are essential for accurately calculating the adsorption behavior of 

molecules on surfaces and interfaces, as well as properties of molecular crystals. This limitation 

is particularly important for systems exhibiting quantum confinement, such as 2D materials 

and layered crystal structures. To address this the so-called van der Waals corrections are 

introduced to DFT in order to include the effects of long-range dispersion forces. Among a 

number of such corrections, Grimme introduced the semiempirical D2 and D3 corrections, 

which accurately include the long-range dispersion forces in standard DFT calculations [114–

116]. The total energy after dispersion correction term is given as; 
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𝐸𝐷𝐹𝑇+𝐷2/𝐷3 = 𝐸𝐾𝑆 + 𝐸𝑑𝑖𝑠   (2.32) 

where 𝐸𝐾𝑆 and 𝐸𝑑𝑖𝑠 are the energies of KS approach and Grimme’s dispersion terms, 

respectively.  

In DFT-D2 method, the dispersion energy is added as an explicit pairwise interaction between 

atoms: 

𝐸𝑑𝑖𝑠 = −𝑠6  ∑ ∑
𝐶6
𝑖𝑗

𝑅𝑖𝑗
6

𝑁𝑎𝑡
𝑗=𝑖+1  𝑓𝑑𝑚𝑝

(𝑁𝑎𝑡−1)
𝑖=1  (𝑅𝑖𝑗)  (2.33) 

where, 𝑠6 is a scaling factor dependent on the exchange-correlation functional, Nat is the total 

number of atoms in the system, 𝐶6
𝑖𝑗
= √𝐶6

𝑖𝐶6
𝑗
 refers to the dispersion coefficient for an atomic 

pair (ij), and 𝑅𝑖𝑗
6  signifies the distance between atoms. The 𝑓𝑑𝑚𝑝 (𝑅𝑖𝑗) represents damping 

function which is given as; 

𝑓𝑑𝑚𝑝 (𝑅𝑖𝑗) =  
1

1+ 𝑒
−𝑑(

𝑅𝑖𝑗
𝑅0𝑖𝑗

−1)

    (2.34) 

where d is an empirical parameter and 𝑅0𝑖𝑗 = 𝑅0𝑖 + 𝑅0𝑗 is sum of the atomic vdW radius. 

DFT-D3 improves upon D2 by introducing higher-order terms (𝑐8,𝑠8) allowing environment-

dependent dispersion coefficients: 

𝐸𝑑𝑖𝑠 = −∑ ∑ ∑ 𝑠𝑛
𝐶𝑛
𝑖𝑗

𝑅𝑖𝑗
𝑛 𝑓𝑑𝑚𝑝,𝑛(𝑅𝑖𝑗)𝑛=6,8

𝑁𝑎𝑡
𝑗=𝑖+1

𝑁𝑎𝑡−1
𝑖=1   (2.35) 

Where 𝑠6 and 𝑠8 are scaling factors for the 𝑐6 and 𝑐8 terms. 𝐶𝑛
𝑖𝑗

 are dispersion coefficients that 

depend on the atomic coordination. 𝑓𝑑𝑚𝑝,𝑛 (𝑅𝑖𝑗) is the modified damping function; 

𝑓𝑑𝑚𝑝,𝑛 (𝑅𝑖𝑗) =  
1

1+ 𝑒
−𝑎1(𝑅𝑖𝑗/𝑅𝑟,0

𝑖𝑗
 −1)

   (2.36) 

Where 𝑎1 and 𝑎2 are empirical parameters that influence the range of dispersion effects. 𝑅𝑟,0
𝑖𝑗

 

is a reference interatomic distance. The parameters 𝑠8  𝑎1 and 𝑎2 are optimized for different 

functionals by fitting to high-level quantum chemistry calculations. The values used for the 

HSE06 [117] and r2SCAN [118] are given below: 
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Functionals s8 a1 a2 

HSE06+D3 2.310 0.383 5.685 

r2SCAN+D3 0.789 0.494 5.730 

 

Using vdW corrections in DFT considerably increases the accuracy of calculated properties, 

including adsorption energies, lattice constants, and cohesive energies. It also enhances 

structural predictions of molecular crystals, layered materials, and van der Waals 

heterostructures. 

2.6.4 LOBSTER: Bonding and Charge Analysis 

LOBSTER first converts the delocalized wavefunctions generated from density functional 

theory (DFT) calculations into a localized atomic orbital basis set. It uses the projector-

augmented wave (PAW) method to reconstruct local atomic orbitals, which helps in the 

understanding of chemical bonding. This process changes the electronic structure from a 

delocalized representation to a localized form which can be used for further analysis, such as 

using the linear combination of atomic orbitals (LCAO) approach. 

After this projection, LOBSTER generates the density and the Hamiltonian matrix, which 

contain essential information about orbital populations and interaction strengths, allowing for 

a quantitative description of bonding. 

The Crystal Orbital Bond Index (COBI) [119] is computed by evaluating the overlap 

population between two atomic orbitals across the Brillouin Zone. This measure quantifies the 

bonding interactions between atoms in a crystal. 

𝐶𝑂𝐵𝐼𝜇𝜈 = ∑ 𝑤𝑘𝑅𝑒(𝑐𝜇,𝑗𝑘
∗ 𝑐𝜈,𝑗𝑘) ∙ 𝛿(𝜀𝑗(𝑘) − 𝐸)𝑗,𝑘    (2.37) 

Where  𝑐𝜇,𝑗𝑘
∗  are the projected coefficients, 𝑤𝑘 are the k-point weights and 𝜀𝑗(𝑘) are the 

energy eigenvalues.  

The Integrated COBI (ICOBI) is obtained by summing over all occupied energy levels. 

COBI corresponds to the chemical bond order, and a higher value indicate a stronger covalent 

interaction between atoms. For example, the ICOBI of a pair of carbon atoms in diamond is 

0.95, which is close to 1 as this is the bond order expected for a single C-C bond. 

𝐼𝐶𝑂𝐵𝐼𝜇𝜈 = ∫ 𝐶𝑂𝐵𝐼𝜇𝜈
𝜀𝐹
−∞

 (𝐸) dE   (2.38) 
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LOBSTER also computes atomic charges using Mulliken and Löwdin population 

analyses [120], which provide estimates of electron distribution on atoms.  

The Mulliken charge on an atom A is given by: 

𝑞𝐴 = 𝑁𝐴 − ∑ 𝑃𝜇𝜇𝜖𝐴    (2.39) 

Where 𝑁𝐴  is the number of valence electrons on atom A and 𝑃𝜇   is the electron population 

in atomic orbitals.  

Löwdin charges are computed similarly but use an orthogonalized density matrix to reduce 

basis-set dependencies. This method provides a more consistent charge distribution compared 

to Mulliken analysis. 

2.7 XtalOpt: An Open-Source Tool for Crystal Structure Prediction 

XtalOpt is an evolutionary algorithm (EA) that predict crystal structures by exploring the 

potential energy landscape using minimal input, such as chemical formula [121]. This open-

source tool integrates with external optimization programs, including VASP [112,122], 

PWSCF [123], and GULP [124–126].  

Predicting the crystal structure of materials using only their stoichiometry has been a long-

standing challenge in computational materials science. The complexity arises from the high-

dimensional parameter space, which includes six lattice parameters and multiple atomic 

positions that must be efficiently sampled to identify global minima. Traditional methods, such 

as chemical intuition or random structure generation often fail for complex systems. 

Evolutionary algorithms, inspired by natural selection processes, offer a powerful alternative 

by iteratively optimizing candidate structures to converge on the most stable configurations. 

XtalOpt employs a population-based evolutionary algorithm where individuals undergo 

selection, mutation, and crossover to explore the energy landscape. 

XtalOpt utilizes both pure and hybrid evolutionary operators for structure generation [127–

132]. Pure operators, such as crossover [133–135], strain [134,136,137], ripple, and 

exchange [127,129,134–137], modify lattice parameters, atomic positions, and ordering. 

Hybrid operators such as "stripple" (strain + ripple) and "permustrain [136]" (exchange + 

strain), combine these effects to enhance search efficiency and reduce duplicate structures. 

Below a description of the operators is given: 
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I. Crossover: Combines two parent structures by cutting and merging their atomic 

configurations. The offspring's lattice dimensions are determined by a weighted 

average of the parental cell vectors. 

II. Strain: Modifies lattice vectors using a strain matrix: 

𝑉𝑛𝑒𝑤 = 𝑉

[
 
 
 1 + 𝜀11

𝜀12

2

𝜀13

2
𝜀12

2
1 + 𝜀22

𝜀23

2
𝜀13

2

𝜀23

2
1 + 𝜀33]

 
 
 

   (2.40) 

where 𝜀𝑖𝑗 are random values drawn from a zero-centered normal distribution with a 

specified standard deviation. 

III. Ripple: Introduces periodic displacements to atomic positions: 

ΔΖ =  𝜌 cos(2𝜋𝜇𝑥 + 𝜃𝑥) cos(2𝜋𝜂𝑦 + 𝜃𝑦)     (2.41) 

Here, ΔZ is the displacement of an atom along the z-axis, 𝜌 is the displacement 

amplitude, 𝜇 and 𝜂 define periodicity and 𝜃𝑥 and 𝜃𝑦 are random phase shifts. 

IV. Exchange: Adjusts atomic ordering by swapping the positions of atoms of different 

types a specified number of times. 

V. Stripple: Combines strain and ripple to improve search diversity and avoid duplicate 

structures. 

VI. Permustrain: Integrates atomic swapping and lattice deformation to balance 

structural changes. 

XtalOpt continuously generates and optimizes new structures without waiting for all 

individuals in a generation to complete their optimization. This strategy reduces bottlenecks 

and improves computational efficiency. To prevent stagnation in the population, XtalOpt uses 

a niching strategy based on direct comparisons of atomic position and lattice parameters, 

providing a more precise and reliable method for ensuring structural diversity. Key parameters, 

such as ripple amplitude, strain standard deviation and crossover contribution are carefully 

adjusted to enhance search efficiency. Additionally, search space constraints including lattice 

parameter ranges and interatomic distances, ensure that generated structures remain physically 

valid. 

The algorithm starts with a set of random or user-specified structures. These structures are 

locally optimization using external codes to refine atomic positions and lattice parameters. 

Their stability is evaluated based on enthalpy, which is calculated as: 𝐻 =  𝑈 +  𝑃 𝑉, where 

𝑈 is the internal energy, 𝑃 is pressure, and 𝑉 is the volume. Structures with lower enthalpy are 
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more stable and are more likely to contribute to the next generation of structures via 

evolutionary operators. This iterative process continues until the user terminates it or reaches 

convergence. 

XtalOpt version r12 has been integrated with a machine learning (ML) model trained on 

the Automatic FLOW (AFLOW) database, which introduces a multi-objective optimization 

approach that evaluates structural stability (enthalpy/energy) alongside mechanical properties 

such as bulk and shear modulus [138]. This enhancement allows the algorithm to identify 

superhard materials more efficiently while significantly lowering the computational cost of 

DFT-based elastic tensor calculations. By optimizing beyond just enthalpy minimization, this 

approach makes the search process faster, more flexible, and adaptable, expanding its 

application to properties like electronic bandgaps, superconductivity, and thermal stability. 

XtalOpt has been extensively applied in high-pressure research, where chemical intuition 

often fails in experimental determination under extreme conditions. Ongoing development in 

XtalOpt is focused on improving crossover strategies and explore additional fitness metrics to 

improve performance. With a user-friendly interface and comprehensive tutorials, XtalOpt is 

accessible to researchers across various disciplines, including chemistry, physics, and materials 

science. One of its key applications is the prediction of high-pressure hydrides, which are 

interesting because of their potential as hydrogen-rich superconductors [139–141]. By 

facilitating the discovery of novel high-pressure materials with significant technological 

potential, XtalOpt continues to drive innovation across multiple scientific fields. 

2.8 Phonon Structure 

Lattice dynamics theory developed from the quantum harmonic oscillator, provides a 

systematic approach modelling atomic vibrations in periodic solids. It offers an alternative to 

classical empirical models and molecular dynamics (MD) simulations for studying natural 

thermal motion and its influence on physical properties, all while maintaining a modest 

computational cost [142,143].  

In condensed matter physics, these atomic vibrations are known as phonons. These 

vibrations consist of waves created by the displacement of atoms in the crystal lattice and are 

classified as a type of quasiparticle. Phonons, as quasiparticles play an important role in 

understanding the thermal, optical, and mechanical properties of materials.  
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In the harmonic approximation, a crystal is represented as a network of atoms connected by 

harmonic springs, with its vibrations described by 3N normal modes (N is the number of atoms 

in the primitive unit cell). Each normal mode appears as a traveling wave [144]: 

𝐴 exp[𝑖(𝑞 ∙ 𝑟 − 𝜔𝑡)]    (2.42) 

Where q is the wave vector, ω is the angular frequency and A is the vibration amplitude.  

The energy with each normal mode is quantized as: 

𝐸𝑞 = (𝑛𝑞 +
1

2
) ℏ𝜔(𝑞)     (2.43) 

Where 𝑛𝑞 = 0,1,2, …  and each quantum of vibrational energy ℏω(q), defines a phonon 

analogous to a photon in electromagnetic waves. Although phonons as quasiparticles do not 

carry true momentum but they are assigned an effective momentum ℏq for practical analysis.  

The theoretical framework of phonons begins with the potential energy U(r) of a crystal, 

which can be expressed using a Taylor series expansion around the equilibrium atomic 

positions 𝑟0 : 

𝑈(𝑟) = 𝑈(𝑟0) + ∑
𝜕𝑈

𝜕𝑢𝑖𝛼
𝑢𝑖𝛼 +

1

2
∑

𝜕2𝑈

𝜕𝑢𝑖𝛼𝜕𝑢𝑗𝛽
𝑖,𝑗,𝛼,𝛽 𝑢𝑖𝛼𝑢𝑗𝛽 +𝑖,𝛼 ….    (2.44) 

Here, 𝑢𝑖𝛼 represents the displacement of atom 𝑖 in the 𝛼 direction from equilibrium, and  𝑈(𝑟0) 

is the energy of the system at equilibrium, The second term vanishes because the forces 

(𝜕𝑈 𝜕𝑢𝑖𝛼⁄ ) are zero at equilibrium and the third term involving the second derivatives of 𝑈, 

defines the force constants 𝜙𝑖𝛼,𝑗𝛽: 

𝜙𝑖𝛼,𝑗𝛽 =
𝜕2𝑈

𝜕𝑢𝑖𝛼𝜕𝑢𝑗𝛽
     (2.45) 

By neglecting higher-order terms simplifies the potential energy as a quadratic functional, 

which forms the basis of the harmonic approximation.  

The oscillatory motion of atoms around their equilibrium positions is governed by 

Newton’s equation of motion. For an atom 𝑖 of mass 𝑀𝑖, displaced by 𝑢𝑖 in the 𝛼 direction, the 

equation of motion is: 

𝑀𝑖
𝑑2𝑢𝑖𝛼

𝑑𝑡2
= −∑ 𝜙𝑖𝛼,𝑗𝛽𝑢𝑗𝛽𝑗,𝛽      (2.46) 
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The solutions to these equations describe two types of vibrational modes: acoustic and 

optical. Acoustic modes involve low-frequency oscillations in which atoms move in phase with 

each other. These include longitudinal acoustic (LA) modes, where vibrations travel in the 

same direction as the wave, and transverse acoustic (TA) modes, where the vibrations occur 

perpendicular to the direction of wave propagation. In contrast, optical modes involve out-of-

phase vibrations between neighboring atoms and occur at higher frequencies. These modes are 

important for interactions with light and play a key role in determining the material’s thermal 

and mechanical properties. 

The atomic displacements in a periodic lattice are expressed using plane wave solutions: 

𝑢𝑖𝛼(𝑡) =
1

√𝑀𝑖
𝑒𝑖(𝑘∙𝑟𝑖−𝜔𝑡)𝜖𝛼(𝑞)     (2.47) 

This is the refined version of simpler plane wave expression in equation (2.42). Here 𝜖𝛼(𝑞) is 

the polarization vector, describing the vibration direction of atoms in a specific phonon mode. 

The inclusion of mass 𝑀𝑖 ensures correct normalization in phonon calculations. 

Substituting the wave solution into the equation of motion leads to the dynamical 

matrix [145,146], which is defined as: 

𝐷𝛼𝛽(𝑞) =
1

√𝑀𝑖𝑀𝑗
∑ Φ𝑖𝛼,𝑗𝛽𝑗 𝑒𝑖𝑞∙(𝑟𝑖−𝑟𝑗)     (2.48) 

The dynamical matrix 𝐷(𝑞) is Hermitian matrix and has real eigenvalues [143]. Its 

diagonalization gives the squared phonon frequencies (𝜔2). Positive squared frequencies 

(𝜔2 > 0) indicate dynamic stability in the system as they correspond to restoring forces. On 

the other hand, negative squared frequencies (𝜔2 < 0)  correspond to the imaginary 

frequencies, indicating dynamical instability.  

There are two methods to calculate 𝐷(𝑞). The first is the finite-displacement method [145], 

where atoms are slightly shifted in real space, and the resulting forces are used to calculate the 

force constants. This method often requires large supercells to accurately capture long-range 

interatomic forces and achieve precise sampling of the Brillouin zone. The second method is 

based on linear-response theory, which directly calculates 𝐷(𝑞) in reciprocal space by using 

density functional perturbation theory (DFPT) [147–149].  

Crystal symmetry significantly reduces computational effort and improves accuracy by 

minimizing the number of unique atomic displacements and q-points, focusing on the 

irreducible Brillouin zone [145]. 
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The phonon density of states (DoS) quantifies the number of vibrational modes available at 

each frequency 𝜔: 

𝑔(𝜔) =  
1

𝑁
 ∑ 𝛿(𝜔 −  𝜔(𝑞))𝑞     (2.49) 

This functional is crucial for connecting microscopic phonon spectrum to macroscopic 

thermodynamic behavior.  

The vibrational contribution to the Helmholtz free energy 𝐹(𝑣𝑖𝑏) at constant volume is given 

by: 

𝐹(𝑣𝑖𝑏) =  
1

2
∑ ℏ𝜔𝑠(𝑞)𝑞,𝑠 + 𝑘𝐵𝑇 ∑ ln [1 − 𝑒

−
ℏ𝜔𝑠(𝑞)

𝑘𝐵𝑇 ]𝑞,𝑠     (2.50) 

where ℏ is the reduced Planck constant, 𝑘𝐵 is the Boltzmann constant, T is the temperature, 

and 𝜔𝑠(𝑞) is the frequency of the phonon mode. Using the free energy (𝐹) other 

thermodynamic properties such as heat capacity (𝐶𝑣) and entropy (𝑆) can be derived. This 

expression accounts for both zero-point energy and thermal occupation of phonon states. 

The quasi-harmonic approximation (QHA) extends harmonic phonon theory to include 

temperature and pressure effects [145,150]. In this method, phonon frequencies are treated as 

functions of the unit cell volume (𝑉). The Gibbs free energy in QHA is given by:  

𝐺 (𝑃, 𝑇) =  [𝐸(𝑉) + 𝐹𝑣𝑖𝑏(𝑉, 𝑇) + 𝑃𝑉]𝑉
𝑚𝑖𝑛     (2.51) 

Where 𝐸(𝑉) is the ground-state energy, 𝐹𝑣𝑖𝑏(𝑉, 𝑇) is the vibrational free energy, and 𝑃𝑉 

represents the pressure-volume term. By minimizing 𝐺 (𝑃, 𝑇) with respect to 𝑉, equilibrium 

properties such as thermal expansion and bulk modulus are determined. In this dissertation, the 

finite displacement method followed by QHA calculations was carried out using the Phonopy 

code. The typical steps in Phonopy-based phonon calculations include: 

I. Supercell Generation: A supercell of the crystal structure is generated to capture 

periodicity and interatomic interactions. 

II. Displacement Creation: Small displacements are applied to specific atoms, 

generating configurations for force calculations. 

III. DFT Software Integration: Input configurations into DFT software (e.g., VASP) 

to compute forces. 

IV. Force Constant Extraction: Use Phonopy to extract force constants 𝜙𝑖𝛼,𝑗𝛽. 
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V. Dynamical Matrix Construction: Using the force constants, the dynamical matrix 

is constructed, and eigenvalues are solved to obtain phonon dispersion relations. 

2.9 Raman Spectroscopy 

Raman spectroscopy is a widely used technique for studying vibrational properties in 

materials. The intensity of Raman active modes is determined by the dielectric polarizability 

tensor, which changes with atomic motion.  

In this section, we present a systematic approach for computing Raman activities by using 

phonon eigenvectors from the dynamical matrix 𝐷𝛼𝛽(𝑞) and dielectric tensor derivatives as 

described in earlier theoretical frameworks [151,152]. 

Raman tensor is given by: 

𝑅𝑖𝑗
(𝑠)
=
𝜕𝛼𝑖𝑗

𝜕𝑄𝑠
    (2.52) 

Where 𝛼𝑖𝑗 is the dielectric polarizability tensor and 𝑄𝑠 is the phonon normal mode 

coordinate. 

The equation for normal mode coordinates and atomic displacements is given by: 

𝑄𝑠 = ∑ 𝑋𝑘
(𝑠)

𝑘 𝑢𝑘   (2.53) 

Where 𝑋𝑘
(𝑠)
= 𝑒𝑘

(𝑠)
/√𝑀𝑘  is the mass-weighted phonon eigenvector and 𝑢𝑘 is the atomic 

displacement.  

Now the Raman tensor can be rewrite as: 

𝑅𝑖𝑗
(𝑠)
= ∑

𝜕𝛼𝑖𝑗

𝜕𝑢𝑘
𝑋𝑘
(𝑠)

𝑘   (2.54) 

This equation shows that the Raman tensor depends on how the dielectric polarizability 

changes as atomic displacements occur. 

The dielectric polarizability derivatives are calculated as follows using finite differences 

from first-principles calculations: 

𝜕𝛼𝑖𝑗

𝜕𝑢𝑘
=
𝛼𝑖𝑗(𝑢𝑘+∆𝑢)−𝛼𝑖𝑗(𝑢𝑘−∆𝑢)

2∆𝑢
   (2.55) 

Using this approximation, the Raman tensor components are computed as: 
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𝑅𝑖𝑗
(𝑠)
= ∑ [

𝛼𝑖𝑗(𝑢𝑘+∆𝑢)−𝛼𝑖𝑗(𝑢𝑘−∆𝑢)

2∆𝑢
] 𝑋𝑘

(𝑠)
𝑘   (2.56) 

Once the Raman tensor is obtained, the Raman intensity of each mode is determined by: 

𝐼𝑅𝑎𝑚𝑎𝑛 = 45 [
1

3
(𝐼11 + 𝐼22 + 𝐼33)]

2

+
7

2
 [(𝐼11 − 𝐼22)

2 + (𝐼11 − 𝐼33)
2 + (𝐼22 − 𝐼33)

2 +

6(𝐼12
2 + 𝐼13

2 + 𝐼23
2 ) ]   (2.57) 

Where 𝐼𝑖𝑗  are elements of the Raman tensor. The first term represents the isotropic 

contribution to Raman scattering, while the second term accounts for the anisotropic 

contributions which influence polarization effects.  

To compare theoretical Raman spectra with experimental results, a Lorentzian broadening 

function is applied. This accounts for phonon finite lifetimes and spectrometer resolution 

limits: 

𝐼(𝜔) = ∑ 𝐼𝑠
𝑅𝑎𝑚𝑎𝑛 1

𝜋

𝛤

(𝜔−𝜔𝑠)2+𝛤2
𝑠   (2.58) 

Where Γ is the phonon lifetime broadening factor which accounting for finite phonon 

lifetimes and instrumental resolution effects. 

2.10   Mechanical Properties 

Elastic properties describe how materials respond to stress or strain, offering vital insights 

into their brittleness, stiffness, hardness, and structural stability. These properties are 

influenced by external pressure and provide valuable information about phase transitions and 

the mechanical stability of crystal structures. Elastic constants are calculated using equilibrium 

configurations, where atomic positions are relaxed under each strain applied to the unit cell. 

The numerical derivative of energy with respect to strain helps to calculate stress, forming the 

basis for assessing the mechanical performance and stability of materials [153].  

In the linear elastic regime, the relationship between the stress tensor (𝜎𝑖𝑗) and the 

corresponding strain tensor (𝜀𝑘𝑙) is described by Hooke's Law: 

𝜎𝑖𝑗 = ∑ 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 𝑘,𝑙   (2.59) 

where 𝐶𝑖𝑗𝑘𝑙 represents the elastic stiffness tensor. On the grounds of static energy analysis, the 

elastic constants correspond to the second derivative of energy with respect to strain per unit 

volume. This relationship can be expressed as: 
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𝐶𝑖𝑗𝑘𝑙 =
𝜕2𝑈

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
  (2.60) 

Where the stiffness tensor is represented as 𝐶𝑖𝑗 in matrix form, determined by the crystal 

symmetry.  

In this work, the elastic constants were calculated for bromine, which has an orthorhombic 

crystal structure. Orthorhombic crystals exhibit nine independent elastic constants (𝐶𝑖𝑗): 

𝐶𝑖𝑗 = 

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 . . .
. 𝐶22 𝐶23 . . .
. . 𝐶33 . . .
. . . 𝐶44 . .
. . . . 𝐶55 .
. . . . . 𝐶66]

 
 
 
 
 

   (2.61) 

For mechanical stability, these constants must satisfy the Born stability criteria [154,155] 

defined by the following relationships for orthorhombic crystals: 

𝐶𝑖𝑖 > 0,  𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 2𝐶𝑖𝑗 > 0, 𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23) > 0 

The 𝐶𝑖𝑗 constants define properties of single crystals. Properties of polycrystalline 

aggregates of crystal are described by aggregate mechanical properties. Aggregate mechanical 

properties such as bulk modulus (𝐵) and shear modulus (𝐺) are calculated from 𝐶𝑖𝑗 using 

averaging methods such as Voigt, Reuss, or Hill approximations [155].  

The Voigt approximation assumes uniform strain and gives: 

𝐵𝑉 = 
1

9
[𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23)] 

𝐺𝑉 =
1

15
 [(𝐶11 + 𝐶22 + 𝐶33 − 𝐶12 − 𝐶13 − 𝐶23) + 3(𝐶44 + 𝐶55 + 𝐶66)]  

The Reuss approximation assumes uniform stress and uses elastic compliance 

constants (𝑆𝑖𝑗), obtained as the inverse of the matrix of elastic constants.  

𝐵𝑅 = 
1

9
[𝑆11 + 𝑆22 + 𝑆33 + 2 (𝑆12 + 𝑆13 + 𝑆23)] 

𝐺𝑅 = 
15

4 
[

1

(𝑆11 + 𝑆22 + 𝑆33) − 4 (𝑆12 + 𝑆13 + 𝑆23) + 3(𝑆44 + 𝑆55 + 𝑆66)
] 

The Hill approximation averages the Voigt and Reuss results: 
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𝐵𝐻 =
𝐵𝑉 + 𝐵𝑅
2

, 𝐺𝐻 =
𝐺𝑉 + 𝐺𝑅
2

 

Using these moduli, other mechanical properties such as Young's modulus (𝐸) and 

Poisson’s ratio (𝜈) can also be calculated.  

Young's modulus (𝐸), describes the material's rigidity, is calculated as: 

𝐸 =  
9𝐺𝐵

3𝐵 + 𝐺
  

Poisson’s ratio, indicating the material's ductility, is given by: 

𝜈 =  
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)
 

These properties provide a comprehensive understanding of the material’s mechanical 

behavior and are crucial for predicting its performance under various conditions. 
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3. Summary of Results  

The work presented in this thesis has been published in three articles and one unpublished 

manuscript (currently under review), all of which are listed in Section 1.6 of the Introduction 

and included as Appendices. This section provides a comprehensive summary and discussion 

of the main results, focusing on the behavior of halogens, particularly bromine and fluorine 

under high-pressure conditions. 

3.1 High-Pressure Behavior of Solid Bromine 

We started our research by investigating the high-pressure behavior of solid bromine using 

hybrid DFT calculations. Traditional GGA-based methods struggle to accurately describe 

phase transitions and electronic properties of such systems at extreme pressures, necessitating 

a more advanced approach. To improve accuracy, we employed DFT calculations with the 

HSE06 functional and Grimme-D3 dispersion correction, utilizing VASP 6.2 code to study the 

structural and electronic properties of bromine up to 200 GPa. For these calculations, we used 

standard PAW potentials, explicitly treating the 4s2/4p5 valence electrons. A plane-wave 

energy cutoff of 800 eV was applied and the Brillouin zone was sampled using a Monkhorst-

Pack mesh with a k-point spacing of 2π ×0.033Å-1. Electronic minimization was performed 

with a convergence threshold of 10-7 eV. Structural optimizations were performed until atomic 

forces were reduced below 5 meV/Å, ensuring accurate assessment of metallization, phase 

stability, and incommensurate phases. Additionally, we employed Lobster 4.1.0 for bonding 

analysis, VESTA for structural visualizations, and FINDSYM for symmetry recognition.  

At ambient pressure, both GGA and meta-GGA methods predict the ground-state structures 

of iodine and bromine incorrectly, favoring C2/m monoatomic chains over the experimentally 

observed molecular Cmca phase. To resolve this, we applied several functionals with D3 

dispersion corrections (see Table 1 in the Supplementary Material of article A1, Appendix 1). 

Our results shows that the only hybrid functionals correctly reproduced the energetic stability 

of the Cmca phase, with structural accuracy improving from GGA to meta-GGA to hybrid 

methods (see below Fig. 4). We therefore adopted hybrid functionals for further calculations. 

Comparisons of theoretical lattice constants and Raman frequencies with experimental X-ray 

and vibrational spectroscopic data show excellent agreement (see Fig. 3 in article A1, Appendix 

1), confirming that our calculations accurately capture the high-pressure stability of the 

molecular Cmca phase.   
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Our results confirm that solid bromine undergoes a pressure-induced phase transition from 

the Cmca (molecular) 
90 𝐺𝑃𝑎
→      Immm (nonmolecular) phase. This result closely aligns with 

previous experimental studies, which reported this transition around 80±5 GPa [52].  

                                 

Fig 5. Pressure-dependent enthalpies (at T = 0 K) of bromine phases relative to the I4/mmm structure. 

Fig 4. (a) Crystal structure of solid bromine in the Cmca molecular structure (Phase I). (b) Comparison 

between the computed and experimentally observed geometry of the Cmca phase at 1 atm. 
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Additionally, our calculation predicts two further phase transitions that at the time of 

publication have not yet been observed experimentally from Immm 
128 𝐺𝑃𝑎
→      I4/mmm 

188 𝐺𝑃𝑎
→      Fm3̅m as shown in above Fig.5.  

A significant result of our study is that bromine becomes metallic at 80 GPa while still in 

its molecular Cmca phase. Previous GGA-based calculations predicted metallization at a much 

lower pressure of 42.5 GPa [58] (see Fig.5 from article A1, Appendix 1). This metallization 

occurs due to the weakening of the Br-Br bond, driven by increasing antibonding effects due 

to the shortening of intermolecular Br∙∙∙Br contacts under compression. As the molecular bond 

destabilized, bromine transitions into quasi-2D metallic structures (Immm and I4/mmm) before 

finally adopting a fully 3D metallic face-centered cubic (Fm3̅m) structure at 188 GPa, as 

depicted in below Fig. 6.  

 

Fig 6. (a) High-pressure crystal structures of solid bromine: phase I (Cmca), phase II (Immm), phase III 

(I4/mmm), and phase IV (𝐹𝑚3̅𝑚). (b) Br-Br distances calculated as a function of pressure for all four phases. 

Stars indicate experimental values (blue-ref. [156] pink – ref. [157]). (c) Integrated crystal orbital bond index 

(ICOBI) for Br-Br distances. The vertical dashed lines in (b) and (c) represent the predicted pressures for 

structural transitions between the respective ground-state phases of bromine. 

Another intriguing aspect of bromine high-pressure behavior is the appearance of 

incommensurate phases during its transition from Cmca to Immm. Our study indicated that the 

Fmm2-28 structure remains stable only within a narrow pressure range of 89 to 92 GPa, while 
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the Cm-10 phase never becomes energetically favorable at any pressure (see Fig.6 in article 

A1, Appendix 1). These modulated phases appear to be transient intermediates which are most 

probably stabilized to the entropic terms which are not included in our calculations. Recent 

single-crystal synchrotron X-ray diffraction (SCXRD) studies by Yin et al. [50] have 

experimentally confirmed the presence of incommensurate structures in bromine within the 

81–112 GPa pressure range, validating our theoretical predictions. Further details are provided 

in article A1 (Appendix 1).  

3.2 Stability and Reactivity of Bromine Fluorides 

Beyond pure bromine, we extended our investigation to bromine fluorides under 

compression. Fluorination is known to significantly alter the bonding behavior of halogens, 

and our goal was to explore the stability and reactivity of bromine fluorides at high pressures.  

We explored the stability and reactivity of bromine fluorides up to 100 GPa, focusing on 

how compression influences their bonding and phase transitions. The enthalpy and geometry 

of BrF were calculated at T=0 K using VASP 6.3 codes. The standard PAW potentials were 

used with explicit treatment of the 4s2/4p5 electrons of bromine and the 2s2/2p5 electrons of 

fluorine. For all calculations, we used a plane-wave energy cutoff of 800 eV and electronic 

minimization was considered converged when energy differences reached 10–7 eV. The 

Brillouin zone was sampled using a Monkhorst–Pack mesh, with a 2π ×0.033Å−1 spacing of k-

points. The electron localization function (ELF) was computed using VASP, while additional 

analyses, including phonon dispersion, bonding analysis, structural visualization, and 

symmetry recognition, were carried out with Phonopy, Lobster 4.1.0, VESTA, and FINDSYM. 

Additionally, a structure search was performed using XtalOpt (version r12) to explore the 

lowest-enthalpy structures of bromine fluorides (BrmFn, where m = 1, n = 1-7, and m = 2, n = 

3, 5) at 20, 50, and 80 GPa. The searches used structures in which the number of formula units 

per unit cell was between 1 and 6. The initial generation consisted of 18 randomly generated 

structures, with additional seed structures included from previous calculations. Symmetry 

constraints and space group perception with a length tolerance of 0.150 Å ensured structural 

diversity while avoiding duplicates. The search used an evolutionary algorithm with a pool size 

of 20 structures per formula unit allowing up to 25 continuous structures per generation. The 

first-generation structures were evolved using a combination of crossover (15%), stripple 

mutations (50%), permutations (35%), and lattice strain mutations (maximum strain standard 

deviation of 0.5). Formula unit crossovers were introduced after generation 4. A total of 399 
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structures per search were generated during the search, with up to 24 jobs running in parallel 

to optimize computational efficiency. The fitness function used for selecting the most stable 

structure was based on enthalpy minimization and evaluated using DFT calculations with the 

r2SCAN+D3 functional.  

Our calculations confirmed the stability of BrF3 and BrF5 at ambient pressure and also 

predicted two novel bromine fluorides BrF2 and BrF6 under high-pressure conditions.  

 

                            

Fig 7. Convex hull diagram predicting the stability for bromine fluorides at different pressures (filled symbols 

represent stable stoichiometries); experimental formation enthalpies for gaseous BrF (green stars) are from 

ref. [158] (b) Br-F phase diagram (0 atm to 100 GPa) with colors and symmetry labels for stable phases. 

BrF3 undergoes a pressure-induced phase transition from Cmc21 
17 𝐺𝑃𝑎
→      Cmcm 

26 𝐺𝑃𝑎
→     P1̅. It 

is important to note that, BrF3 becomes thermodynamically unstable above 21 GPa with respect 

to decomposition into BrF5 and the newly predicted bromine fluoride of BrF2.  

Enthalpy formation calculations, depicted in Fig. 7(a), indicate that BrF5 is the most stable 

bromine fluoride in the studied pressure range. BrF5 exists as a liquid under ambient conditions, 

but it crystallizes into a solid phase with P1 symmetry at 1 atm. Around 8 GPa, it transforms 
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into a molecular crystal with P1̅ symmetry, consisting of square pyramidal BrF5 units. In the 

P1 phase at ambient pressure, Br-F bond lengths range from 1.72 to 1.83 Å, while in the 

P1̅phase at 100 GPa, the bond lengths are slightly shorter, ranging from 1.65 to 1.81 Å (see 

Fig. S3 in supplementary material of article A2, Appendix 2). Notably, BrF remains 

thermodynamically unstable across the entire pressure range of 0 to100 GPa. 

BrF2 emerges as novel bromine fluoride, becoming thermodynamically and dynamically 

stable at pressures above 13 GPa and remaining stable up to at least 100 GPa. It adopts a 

monoclinic C2/m crystal structure, characterized by a distinct trimeric arrangement of F-Br-F 

units, where the central unit is linear and the outer ones are slightly bent (see Fig. 5, article A2, 

Appendix 2). This unique trimeric configuration is stabilized by three-center bonding 

interactions between bromine atoms, which leads to the formation of radical species. BrF2 is 

also predicted to be an open-shell, semiconducting compound with a small but finite band gap 

that persists even under high pressure. Importantly, it may be synthesized either by the reaction 

of Br2 and BrF3 at 13 GPa or through the pressure-induced decomposition of BrF3 into BrF2 

and BrF5 above 21 GPa, offering experimentally accessible routes to this novel compound. 

Similarly, BrF6 became stable above 9 GPa and persisted on the convex hull up to 100 GPa, 

as illustrated in Fig. 7(a). BrF6 stabilizes through an alternative pathway, with its electrons 

more uniformly delocalized across the molecule, resulting in a more stable electronic structure. 

These results show how applying high pressure changes the behavior of bromine fluorides, 

making them structurally and electronically different from iodine fluorides. Further details and 

an extended discussion of these results are available in article A2 (Appendix 2).  

3.3 Thermal and Mechanical Behaviour of Bromine under High Pressure 

To explore the thermal and mechanical properties of bromine under high pressure, we 

performed hybrid DFT calculations in combination with the quasi-harmonic approximation 

(QHA). Phonon dispersion analysis using the finite displacement method (Phonopy 2.18.0) 

confirmed that the 𝐶𝑚𝑐𝑎 phase remains dynamically stable up to 90 GPa, with no signs of 

imaginary vibrational modes (see Fig. 2 in article A3, Appendix 3).  

The calculated Raman-active frequencies closely match with experimental results as shown 

in Fig.8a. DFT modeling accurately captures the 2Ag and 2B3g frequency shift above 20 GPa 

and the significant hardening of the 1Ag and 1B3g librational modes, which increase by over 

100 cm-1 at 30 GPa. These hindered rotations within the bc plane (Fig. 8b) have higher 

frequencies and greater pressure dependence than the 1B1g mode.  
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The computed Raman spectra for the 𝐶𝑚𝑐𝑎 phase (Fig.8c) shows negligible 1B1g and 1B2g 

mode intensity at 0 GPa, explaining their absence in experiments. As shown in Fig. 8d, their 

intensity increases with pressure, which is consistent with the observed emergence of 1B1g 

above 30 GPa. Additionally, the pressure-induced increase in 1Ag intensity obscures the 2B2g 

band, explaining its absence in experimental observations. 

 

 

Fig 8. (a) Raman frequencies for the Cmca phase: our HSE06+D3 data (grey lines) and experiment (dots, red—

ref. [159], green—ref. [160], blue—ref. [54]). (b) Atomic displacements (red vectors) in the B3g and Ag modes. 

(c, d) calculated Raman spectra of bromine (blue lines) at 0 GPa and 50 GPa. 

 

Using phonon based QHA calculations, we derived thermodynamic parameters such as free 

energy (F), entropy (S), heat capacity, and thermal expansion coefficients across a temperature 

range from 0 to 1000 K and pressures up to 90 GPa (see Fig.4 from article A3, Appendix 3). 

Our results show that the heat capacity initially follows the T3 dependence predicted by Debye 

theory at low temperatures. As pressure increases, the heat capacity approaches the Dulong–

Petit limit but at a higher temperature, reflecting enhanced intermolecular interactions and 

anharmonic effects. The thermal expansion coefficient (𝛼) also decreases with pressure, 

reflecting the increased rigidity of the molecular structure of bromine under compression. 

The calculated elastic constant indicate that the C13 begins to soften around 60 GPa while 

C44 elastic constant decreases above 80 GPa (see below Fig.9). This trend suggests mechanical 

instability near 90 GPa, coinciding with predicted band gap closure (~80 GPa) and 

experimentally determined appearance of incommensurate phases (~81 GPa) [50]. 
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Fig 9. The pressure dependence of (a) the calculated elastic constants at 0 K and (b) the bulk modulus, with a 

comparison between VASP and QHA for bromine. 

We also examined pressure-dependent isotropic bulk modulus (B), shear modulus (G), and 

Young’s modulus (Y) of bromine using Voigt-Reuss-Hill approximation, as detailed in Section 

2.10 of the Methods. At ambient pressure, the bulk modulus estimated from the elastic 

constants is ~11.8 GPa, which is higher than the 5.5 GPa obtained through QHA calculations, 

as shown in above Fig. 9b. The calculated shear and Young’s moduli increase consistently with 

increasing pressure. At 30 GPa, the elastic modulus of bromine reaches a value comparable to 

that of steel (see Fig.7 article A3, Appendix 3). Furthermore, the calculated Pugh’s ratio (B/G 

< 1.75) and Poisson’s ratio (𝜗 < 0.26) indicate that bromine is brittle in the orthorhombic 

phase. A comprehensive analysis of the thermal and mechanical properties of bromine up to 

90 GPa is presented in article A3 (Appendix 3). 

3.4 High-Pressure Behaviour of Solid Bromine - Experimental Validation 

To confirm our predicted phase transitions above 90 GPa, our experimental collaborators 

conducted high-pressure experiments on solid bromine using diamond anvil cells (DACs), 

achieving static pressures up to 230 GPa. These experiments were performed at the Advanced 

Photon Source (USA) and the European Synchrotron Radiation Facility (France), utilizing 

synchrotron X-ray diffraction to examine the structural evolution of bromine under extreme 

conditions.  

To further understand the structural changes observed in experiment, we performed 

additional DFT calculations to investigate the ground-state properties and potential energy 

surface (PES) of metallic bromine at pressures between 90 and 180 GPa. These calculations 
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were performed using the HSE06+D3 functional in VASP 6.3.2 code with a dense k-point 

sampling of 19×19×12 to ensure high accuracy.  

All three structure Immm, I4/mmm and Fm3̅m represented within common orthorhombic 

conventional cell by adjusting the ratios of the lattice parameters b/a and c/a, with keeping 

bromine atoms fixed at the fractional coordinates (0,0,0) and (½, ½, ½). At each pressure point, 

we generated a set of structures by varying b/a from 1.00 to 1.10 and c/a from 1.40 to 1.95, 

optimizing the cell volume at each step. When b/a =1, the a and b axes become equal and 

structure becomes tetragonal, corresponding to the I4/mmm phase. Further increasing c/a =√2, 

leads to the cubic (Fm3̅m) phase, where all three lattice parameters are equal. This approach 

allows all three phases to be explored within a same structural framework. 

For every such distortion, the unit cell volume was optimized while keeping the cell shape 

(i.e., b/a and c/a ratios) fixed. The enthalpy was then computed using DFT, providing a set of 

values that define the potential energy surface (PES) as a function of lattice shape at a given 

pressure. The thermodynamically stable structure corresponds to the minimum on this PES. To 

simplify the mapping analysis, we assumed that the system is symmetric with respect to the 

exchange of the a and b axes that is, H(a,b,c) = H(b,a,c).  

Our X-ray diffraction data confirm that bromine undergoes a structural transition from 

Immm→ I4/mmm→Fm3̅m phase (see Fig.1 in unpublished article A4, Appendix 4), consistent 

with our theoretical predictions as shown in Fig.5. However, instead of a sharp transition, 

experimental data show a coexistence of Immm and I4/mmm phases between 105 and 163 GPa 

(see Fig. S1 in supplementary material of unpublished article A4, Appendix 4). This 

coexistence suggests significant anharmonic and entropic contributions, indicating that both 

phases remain thermodynamically accessible across a broad pressure range, rather than 

undergoing a conventional first-order transition. 

Fig. 10 shows calculated enthalpy surface of bromine as a function of b/a and c/a ratio. This 

contour map shows the relative enthalpies of various distortions structure, with local minima 

corresponding to energetically favorable phases. At 100 GPa the I4/mmm structure is a saddle 

point between two PES minima corresponding to the Immm structure. Starting from 120 GPa 

a broad, shallow region on the potential energy surface develops, encompassing both the Immm 

and I4/mmm structures. This reveals a high degree of anharmonicity and suggesting entropic 

stabilization of intermediate distortions. As pressure increases, a deeper and sharper minimum 

emerges around the I4/mmm configuration, marking its evolution into the thermodynamic 

ground state. At pressures above 160 GPa, a new minimum appears at b/a =1 and c/a = √2 , 
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corresponding to the Fm3̅m structure (see Fig. 3 in unpublished article A4, Appendix 4). 

Between 180 and 195 GPa, the Fm3̅m minimum becomes slightly lower in enthalpy than the 

I4/mmm, marking the onset of a transition to a fully isotropic cubic phase.  

Unlike iodine [161], which undergoes a Immm→ I4/mmm transition without a noticeable 

volume change, bromine exhibits a clear volume discontinuity, despite the symmetry 

relationship between these phases. Potential energy surface (PES) calculations reveal strong 

anharmonicity in the Immm phase, where minor lattice variations (~5–10%) result in minimal 

enthalpy changes (<5 meV/atom). Bromine completes its structural transition with Fm3̅m 

phase, which begins around 172 GPa and fully stabilizes near 180 GPa. A detailed discussion, 

including the enthalpy landscape, is presented in unpublished article A4 (Appendix 4). 

Fig 10. Pressure-dependent PES of bromine (meV/atom) as a function of c/a and b/a ratios. (Black stars 

indicate the Immm structure minima, black circle denoted the I4/mmm structure where b/a=1 and black 

square show the Fm3̅m structure with b/a =1 and c/a = √2  = 1.41) 
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4. Conclusion and Future Work 

This study presents a comprehensive theoretical and experimental investigation into the 

high-pressure behavior of solid bromine (Br2), offering significant insights with high accuracy 

into phase pressure induced phase transformations. We examined a sequence of structural 

transitions between atomic phases by utilizing state-of-the-art computational methods, 

particularly hybrid density functional theory (HSE06+D3) with synchrotron X-ray diffraction. 

These transitions lead finally to the formation of a close-packed face centered cubic (fcc) 

bromine phase with electronically isotropic metallic characteristic. The observed phase 

transformation sequence is similar to the iodine but occurs at significantly higher pressures and 

suggesting an unexpected first-order transition. This transition was further confirmed through 

thermodynamic analyses based on the quasi-harmonic approximation (QHA), including 

mechanical stability.  

Additionally, our calculations also show that the Br/F phase diagram exhibits a rich and 

previously unexplored chemistry under moderate pressure (~15 GPa). We found two novel 

bromine fluoride compounds BrF2 and BrF6, both open-shell, non-metallic compounds. These 

findings contribute to the understanding of chemical bonding and phase stability in condensed 

matter systems under extreme conditions. 

Future research will focus on fluorine’s high-pressure reactivity with other electronegative 

nonmetals such as oxygen, sulfur, and chlorine. In parallel, we also intend to explore nitrogen-

rich materials, particularly those involving [N2]
x- dimers and extended nitrogen structures, 

including recently synthesized polynitrides. This will involve a detailed analysis of bonding 

characteristics, N-N distances, charge distributions, and bonding indices such as the Integrated 

Crystal Orbital Bond Index (ICOBI). These analyses will contribute to a deeper understanding 

of nitrogen chemistry under extreme conditions and holds promise for the design and 

development of advanced materials with tailored properties for a range of technological 

applications. 

In conclusion, this study establishes a solid foundation for understanding non-metallic 

bonding behavior in molecular crystals of interest under pressure and opens new pathways for 

discovery of unconventional compounds. It not only enhances our knowledge of elemental 

chemistry in extreme environments but also lays the groundwork for future experimental 

validation and potential technological innovations.  
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